簡易檢索 / 詳目顯示

研究生: 林彥妘
Lin, Yen-Yun
論文名稱: 大型抽水泵吸入口喉部流速均勻度探討
Investigation of Flow Velocity Uniformity at the Inlet Throat of a Large-Scale Pump
指導教授: 蕭士俊
Hsiao, Shih-Chun
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 63
中文關鍵詞: 抽水井流速導流體旋轉角皮托管
外文關鍵詞: pump intake, flow velocity, flow deflectors, swirl angle, pitot tube
相關次數: 點閱:116下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 大型抽水泵廣泛運用於防洪抽水站、汙水處理廠及電廠循環冷卻水系統,其機件是否能有效率的運轉且壽命合乎預期並降低維護成本,需要仰賴抽水井設計,現今廣為參考的工程設計規範為美國HI標準及英國BHRA準則,然而整個抽水系統涵蓋了許多水工結構物,相當繁雜,規範所建議之設計僅考慮了簡單之邊界條件,在面對複雜的地形及抽水井內部結構,仍需進行水工模型試驗加以校驗,確保整體安全性與了解實際的流場變化。
    本文旨在以水工模型試驗探討流場特性對於吸入口喉部流速均勻度的影響。試驗以塔寮坑抽水站之抽水井結構設計為縮尺模型,利用超音波都卜勒流速儀(ADV)量測抽水井渠道之三維流場,且分別設置了均勻流及斜向流兩種流況,在此條件下,藉由轉速計觀測吸入管內旋轉角度,透過皮托管量測吸入口之喉部流速,依照不同流況對其影響程度進行數據分析以了解管內流場特性,探討入流流況對其影響程度。此外,試驗也在斜向流況時於吸入口正下方設置導流體,加以分析吸入管內流速均勻性的改善情況。
    試驗結果顯示,在均勻流況下,抽水井流場分佈均勻且穩定,吸入管內流速也為均勻分布,旋轉角度皆符合設計規範;在斜向流況時,水流受到結構體影響,使流場分佈不均使喉部流速偏差值大,導致旋轉角度因而超過設計規範,不利於抽水井優化;本試驗設置的圓椎形導流體可以讓吸入管內流速均勻分佈,對於流場穩定有顯著的效果。
    由於現今水工模型試驗多以旋轉角度及渦漩型態作為優化抽水井設計準則,故以上試驗對於吸入管內流速均勻性探討之結論,可將管內流速做為參考指標之一,以供未來工程之參考依據。

    Large pumps are extensively used in flood control pumping stations, sewage treatment plants, and power plant circulating cooling water systems. Whether their components can operate effectively, meet expected lifespans, and reduce maintenance costs all depend on the design near the intake of the pumping well. Faced with complex terrains and the internal structure of pumping wells, verification through hydraulic model testing is still necessary to ensure overall safety and understand real flow field variations. As current experiments often use rotational angles and vortex types as the standards for optimizing pumping well designs, this study will conduct hydraulic model tests and delve deeply into the impact of flow field characteristics on the uniformity of flow velocity at the intake throat. Using flow velocity data measured by Pitot tubes, the uniformity of flow velocity within the intake pipe will be discussed. Additionally, flow deflectors are set up to analyze improvements in uniformity. The conclusion reveals that the uniformity of flow velocity at the throat also affects the design of the pump intake, thus serving as one of the reference indicators for future engineering considerations.

    摘要 I EXTENDED ABSTRACT II 誌謝 XII 目錄 XIII 表目錄 XV 圖目錄 XVI 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 2 1.3 全文目的與架構 5 第二章 實驗配置與研究方法 7 2.1 因次分析 7 2.2 模型設計與建構 8 2.2.1 主結構模型製作 8 2.2.2 導流體設置 13 2.3 實驗儀器與設備 16 2.3.1 流量計 16 2.3.2變頻器 17 2.3.3流速儀 18 2.3.4皮托管 19 2.3.5轉速計 19 2.4 實驗步驟 21 2.4.1實驗準備 22 2.4.2渠道流速量測 23 2.4.3吸入口喉部流速量測 23 2.5 實驗條件 24 第三章 實驗分析 26 3.1 渠道流速量測 26 3.1.1 流速量測點位 26 3.1.2 平均流速及流速標準差 26 3.2 旋轉角度 28 3.3 吸入口喉部流速 29 第四章 結果與討論 32 4.1 渠道流場特性 32 4.1.1流場穩定性 32 4.1.2平均流速特性 35 4.2 吸入管內旋轉角度特性 45 4.3 吸入口喉部流場特性 47 第五章 結論與建議 60 5.1結論 60 5.2建議 61 參考文獻 62

    1. Arboleda, G., & El-Fadel, M. (1996), “Effects of approach flow conditions on pump sump design”, Journal of Hydraulic Engineering,122(9), (p489-494).
    2. Ansar, M., & Nakato, T. (2001), “Experimental study of 3D pump-intake flows with and without cross flow”, Journal of Hydraulic Engineering,127(10), 825-834.
    3. ANSI/HI 9.8 (2018) standard, “American National Standard for Rotodynamic Pumps for Pump Intake Design, Hydraulic Institute”, New Jersey, ISBN 978-880952-70-2.
    4. Hecker, G.E. (1987), “Fundamentals of Vortex Intake Flow”, IAHR Hydraulic Structures Design Manual on Swirling Flow Problems at Intakes, edited by J.Knauss, Balkema/Rotterdam, (p13-38).
    5. Harun, Z. (Ed.) (2020), “Vortex Dynamics Theories and Applications”, BoD–Books on Demand.
    6. Jain, A.K., Raju, K.G.R., and Garde, R.J. (1978), “Vortex Formation at Vertical Pipe Intakes”, J. of Hydr, Div., ASCE,vol.104, No.HY10, (p1429-1445).
    7. Nakato, T., & Krütten, M. (1999), “Coping with Strong Cross Flows at Pump Intake”, In Proceedings of the 28th IAHR Biennial Congress.
    8. Nakato, T. (2000), “An attempt to clarify acceptable pump-throat velocity-distribution criteria in pump-intake model studies”, In Building Partnerships (p1-10).
    9. Prosser, M.J. (1977), “The Hydraulic Design of Pump Sumps and Intakes”, British Hydromech, Res.Assn., Cranfield, Bedford, England.
    10. Padmanabhan, M., Hecker, G.E. (1984), “Scale Effects in Pump Sump Models”, J. of Hydr. Eng., ASCE, vol.110, No.11, (p1540-1556).
    11. Padmanabhan, M. (1987), “Design Recommendations”, IAHR Hydraulic Structures Design Manual on Swirling Flow Problems at Intakes, edited by J.Knauss, Balkema/Rotterdam, (p101-123).
    12. Tullis, J.P. (1979), “Modeling in Design of Pumping Pits”, J. of Hydr, Div., ASCE, vol.105, No.9, (p1053-1063).
    13. Verhaart, F. I. H., Zwanenburg, S. A. A., & De Fockert, A. (2014, March), “The results of a detailed measurement campaign on the effect of modifications to the pump compartment on spatial velocity profiles in vertically submersible pumps”, In IOP Conference Series: Earth and Environmental Science (Vol. 22, No. 3, p. 032019). IOP Publishing.
    14. Verhaart, F. I., de Fockert, A., & Zwanenburg, S. A. (2016), “Velocity profiles in the bell mouth throat of vertically submersible pumps”, Journal of Applied Water Engineering and Research,4(2), (p102-111).
    15. 國立成功大學,民生抽水站排水擴充試驗與數值分析研究報告書,台北市政府,(2020)。
    16. 新北市政府水利局,新北市新莊區塔寮坑抽水站機組更新工程(第二期) 水工模型試驗驗證成果報告(修正版),財團法人成大研究發展基金會,(2023)。

    無法下載圖示 校內:2026-12-23公開
    校外:2026-12-23公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE