簡易檢索 / 詳目顯示

研究生: 劉哲瑜
Liu, Che-Yu
論文名稱: 以直流鏈電壓調控提升內藏型永磁同步馬達之高效率操作區間
Improvement of High Efficiency Operating Range for Interior Permanent Magnet Synchronous Motor with DC-Link Voltage Regulation
指導教授: 謝旻甫
Hsieh, Min-Fu
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 120
中文關鍵詞: 直流鏈電壓調控內藏型永磁同步馬達高效率操作區間
外文關鍵詞: DC-Link voltage regulation, interior permanent magnet motor, high efficiency of operating region
相關次數: 點閱:62下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,隨著環保意識抬頭,各國對電動車的研究逐漸蓬勃發展。其中,內藏型永磁同步馬達因具有高功率密度、高扭矩密度、寬廣的轉速範圍等特性,逐漸成為電動車市場的主流應用趨勢。此外,各電動載具企業亦對馬達驅動系統之高效率操作範圍有更高的要求,以延長電池的使用時間及行駛里程。本文分析驅動系統之損失來源,以內藏型永磁同步馬達搭配低於馬達額定功率之升壓轉換器,利用兩種不同之直流鏈電壓,使驅動系統不論在低速與高速區間都可保持高效率,拓展其高效率操作區域。
      本文提出之驅動系統操作結合了升壓轉換器、每安培最大轉矩控制、弱磁控制三者,涵蓋大部分馬達操作之區域,並以小訊號模型研究直流鏈電壓對轉速及轉矩之影響,且以阻抗匹配分析,確保升壓轉換器與變頻器操作之穩定性。本文利用MATLAB/Simulink為動態模擬工具,模擬所提出之控制架構,並以實際測試驗證所提出之方法,在高、低轉速區域都擁有較高之效率,並延伸操作範圍。

    In recent years, with the rise of environmental awareness, the research on electric vehicles has rapidly developed. The interior permanent magnet (IPM) motor has become the mainstream application trend in the electric vehicle market due to its high power density, high torque density, and wide speed range. In addition, there is a higher demand for the high-efficiency operating range of the motor drive system has arisen regarding the extension of the battery life and the wider driving range.
     This thesis analyzes the loss sources of the drive system via combining IPM motor drive with the boost converter that has lower rated power than the motor. With two different DC link voltages applied, the drive system can maintain high efficiency in both low-speed and high-speed ranges and further expand its high-efficiency operating area. The proposed drive system combines the boost converter, maximum torque per ampere control (MTPA), and flux weakening control (FW) to cover the motor operating region, also uses small-signal model to study the effect of DC-Link voltage on speed and torque, and analyzes the impedance matching to ensure the stability of the boost converter and the inverter. This thesis exploits MATLAB/Simulink to simulate the control structure and circuit and also conducts the experiment to verify that the proposed method can keep high efficiency in the high and low speed regions and extend the operating range as well.

    摘要 I 目錄 XI 表目錄 XIV 圖目錄 XVI 符號表 XXII 第一章 緒論 1 1.1 研究背景 1 1.2 文獻回顧 5 1.2.1 定子側弱磁用於馬達驅動系統 5 1.2.2 轉子側弱磁用於馬達驅動系統 7 1.2.3 混合式儲能系統用於馬達驅動系統 9 1.3 研究動機與目的 15 1.4 論文架構 16 第二章 永磁同步馬達之數學模型與磁場導向控制法 17 2.1 永磁同步馬達之數學模型 17 2.1.1 三相座標軸之馬達數學模型 17 2.1.2 α-β靜止座標之馬達數學模型 20 2.1.3 d-q旋轉座標之馬達數學模型 22 2.2 馬達驅動器 25 2.3 馬達驅動法 26 2.3.1 磁場導向控制法 26 2.3.2 每安培最大轉矩控制 32 2.3.3 弱磁控制 34 第三章 馬達驅動系統損失分析 37 3.1 馬達規格與參數 37 3.2 馬達驅動系統損失評估 39 3.2.1 變頻器損失評估 39 3.2.2 永磁同步馬達損失評估 43 3.2.3 小結 46 3.3 變頻器輸入電壓對永磁同步馬達之操作範圍的影響 47 3.4 變頻器輸入直流電壓對馬達轉矩漣波影響 51 3.5 小結 55 第四章 直流鏈電壓調控系統與穩定性分析 56 4.1 兩段式電壓控制策略電路架構 56 4.1.1 實測深度弱磁區之效率差異 60 4.1.2 實測輕度弱磁區之效率差異 64 4.1.3 小結 67 4.1.4 兩段式電壓控制架構 68 4.2 升壓轉換器小訊號模型與設計 74 4.2.1 升壓轉換器元件參數選擇 74 4.2.2 升壓轉換器小訊號模型 78 4.2.3 升壓轉換器控制器設計 80 4.2.4 模擬驗證 85 4.3 內藏型永磁同步馬達小訊號模型 87 4.4 阻抗匹配 96 第五章 直流鏈電壓調控系統實驗規劃 102 5.1 實驗環境介紹 102 5.2 升壓轉換器之電阻性負載實測結果 106 5.3 直流鏈電壓調控系統之效率實測結果 109 第六章 結論與未來展望 115 6.1 結論 115 6.2 未來展望 115 參考文獻 116

    [1] 安鋒、康利平、秦兰芝、毛世越、王雯雯、Maya Ben Dror, 中国传统燃油汽车退出时间表研究, 能源与交通创新中心(iCET),2019
    [2] F. Knobloch, S. Hanssen, A. Lam, H. Pollitt, P. Salas, U. Chewpreecha, MAJ. Huijbregts,and JF. Mercure, “Net emission reductions from electric cars and heat pumps in 59 world regions over time.” Nature Sustainability, Jun. 2020.
    [3] 黃得晉, 電動車驅動馬達發展現況, 金屬中心(ITIS), 2012
    [4] 加藤崇,自動車駆動用途における 可変特性型高効率モータに関する研究,平成27年3 月
    [5] S. Morimoto, Y. Takeda, T. Hirasa and K. Taniguchi, "Expansion of operating limits for permanent magnet motor by current vector control considering inverter capacity," IEEE Transactions on Industry Applications, vol. 26, no. 5, pp. 866-871, Sep.-Oct. 1990.
    [6] S. Morimoto, Y. Takeda, T. Hirasa and K. Taniguchi, "Expansion of operating limits for permanent magnet motor by optimum flux-weakening," in Proceedings of Conference Record of the IEEE Industry Applications Society Annual Meeting, 1989, pp. 51-56 .
    [7] D. J. Evans, Z. Q. Zhu, H. L. Zhan, Z. Z. Wu and X. Ge, "Flux-weakening control performance of partitioned stator switched flux PM machines," in Proceedings of 2015 IEEE International Electric Machines & Drives Conference (IEMDC), 2015, pp. 391-397.
    [8] Z. Zheng, Y. Li, K. Wang and L. Qiu, "A new adaptive flux weakening method of PMSM," in Proceedings of 2011 International Conference on Electrical Machines and Systems, 2011, pp. 1-5.
    [9] Y. Xu, C. Morito and R. D. Lorenz, "Extending High-Speed Operating Range of Induction Machine Drives Using Deadbeat-Direct Torque and Flux Control With Precise Flux Weakening," IEEE Transactions on Industry Applications, vol. 55, no. 4, pp. 3770-3780, Jul-Aug. 2019.
    [10] R. Jayarajan, N. Fernando and I. U. Nutkani, "A Review on Variable Flux Machine Technology: Topologies, Control Strategies and Magnetic Materials," IEEE Access, vol. 7, pp. 70141-70156, 2019.
    [11] J. Cao and A. Emadi, "A New Battery/UltraCapacitor Hybrid Energy Storage System for Electric, Hybrid, and Plug-In Hybrid Electric Vehicles," IEEE Transactions on Power Electronics, vol. 27, no. 1, pp. 122-132, Jan. 2012.
    [12] M. K. Andreev, "An Overview of Supercapacitors as New Power Sources in Hybrid Energy Storage Systems for Electric Vehicles," in Proceedings of 2020 XI National Conference with International Participation (ELECTRONICA), 2020, pp. 1-4.
    [13] X.Feng, J.Liu and F. C. Lee, "Impedance specifications for stable DC distributed power systems," IEEE Transactions on Power Electronics, vol. 17, no. 2, pp. 157-162, Mar. 2002.
    [14] J. O. Estima and A. J. Marques Cardoso, "Efficiency Analysis of Drive Train Topologies Applied to Electric/Hybrid Vehicles," IEEE Transactions on Vehicular Technology, vol. 61, no. 3, pp. 1021-1031, Mar. 2012.
    [15] T. -S. Li, Y. -H. Yang, C. -A. Cheng and Y. -M. Chen, "A Variable DC-Link Voltage Determination Method for Motor Drives with SiC MOSFETs," in Proceedings of 2020 IEEE Workshop on Wide Bandgap Power Devices and Applications in Asia (WiPDA Asia), 2020, pp. 1-6.
    [16] A.M. Howlader, N. Urasaki, T. Senjyu, A. Yona, and A.Yousuf Saber,” Optimal PAM Control for a Buck Boost DC-DC Converter with a Wide-Speed-Range of Operation for a PMSM”, Journal of Power Electronics, 2010
    [17] D.Y Kim and J.H. Lee, “Low Cost Simple Look-Up Table-Based PMSM Drive Considering DC-Link Voltage Variation,” Energy, 2020
    [18] E. Fernández, A. Paredes, L. Romeral, and V. Sala, “Analysis of power converters with devices of SiC for applications in electric traction systems,” in Proceedings of IEEE International Power Electron and Motion Control Conference (PEMC), Sept. 2016, pp. 267-272.
    [19] Q. Haihong, X. Haotian, Z. Ziyue, N. Xin, X. Huajuan, and F. Dafeng, “Comparisons of SiC and Si devices for PMSM drives,” in Proceedings of IEEE International Power Electron. Motion Control Conference (IPEMC-ECCE Asia), May 2016, pp. 22-26.
    [20] K. Kumar, M. Bertoluzzo, and G. Buja, “Impact of SiC MOSFET traction inverters on compact-class electric car range,” in Proceedings of IEEE Power Electronics Drives Energy System (PEDES), Dec. 2014, pp. 16-19.
    [21] X. Ding, M. Du, C. Duan, H. Guo, R. Xiong, J. Xu, J. Cheng, and P. C. K. Luk, “Analytical and experimental evaluation of SiC-inverter nonlinearities for traction drives used in electric vehicles,” IEEE Transactions Vehicle Technology , vol. 67, pp. 146-159, Jan. 2017.
    [22] Q. Guo, C. Zhang, L. Li, M. Wang, L. Pei, and T. Wang, “Maximum efficiency control of permanent magnet synchronous motor system with SiC MOSFETs for Flywheel Energy Storage,” in Proceedings of Internaional Conference. Electric Machine System, Nov, 2016, pp.1-5.
    [23] E. Fernández and M. Coello, “Control drive for SMPMSM in CSI converter with SiC devices,” in Proceedings of Central America Panama Convention, Noc. 2017, pp.1-6.
    [24] Z. Davletzhanova, O. Alatise, J. O. Gonzalez, S. Konaklieva, and R. Bonyadi, “Electrothermal Stresses in SiC MOSFET and Si IGBT 3L-NPC Converters for Motor Drive Applications,” in Proceedings of PCIM, May 2017, pp. 1-8.
    [25] Y. Bai, X. Tang and G. Wu, “Speed control of flux weakening on interior permanent magnet synchronous motors,” in Proceedings of Transactions of China Electro Technical Society, vol. 26, pp. 54-60, 2011.
    [26] S. C. Lai, C. Ian Hill and N. Suchato, "Implementation of an Advanced Modelica Library for Evaluation of Inverter Loss Modeling," in Proceedings of 2019 IEEE Texas Power and Energy Conference (TPEC), 2019, pp. 1-6.
    [27] H. Matsumori, T. Shimizu, K. Takano and H. Ishii, "Novel iron loss calculation model for AC filter inductor on PWM inverter," in Proceedings of 2016 IEEE 8th International Power Electronics and Motion Control Conference (IPEMC-ECCE Asia), 2016, pp. 3676-3681.
    [28] Z. Xuhui, W. Xuhui, G. Xinhua and Z. Feng, "Analysis of voltage source inverter losses model," in Proceedings of 2011 International Conference on Electric Information and Control Engineering, 2011, pp. 5704-5707.
    [29] M. Rodríguez, A. Rodríguez, P. F. Miaja, D. G. Lamar and J. S. Zúniga, "An Insight into the Switching Process of Power MOSFETs: An Improved Analytical Losses Model," IEEE Transactions on Power Electronics, vol. 25, no. 6, pp. 1626-1640, Jun 2010.
    [30] ROHM, “SCT3060AL N-channel SiC power MOSFET”, Datasheet, Jun. 2018.
    [31] A. Balamurali, G. Feng, C. Lai, V. Loukanov and N. C. Kar, "Investigation into variation of permanent magnet synchronous motor-drive losses for system level efficiency improvement," in Proceedings of IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society, 2017, pp. 2014-2019.
    [32] A. Al-Timimy, P. Giangrande, M. Degano, M. Galea and C. Gerada, "Investigation of AC Copper and Iron Losses in High-Speed High-Power Density PMSM," in Proceedings of 2018 XIII International Conference on Electrical Machines (ICEM), 2018, pp. 263-269.
    [33] R. Wrobel, A. Mlot and P. H. Mellor, "Contribution of End-Winding Proximity Losses to Temperature Variation in Electromagnetic Devices," IEEE Transactions on Industrial Electronics, vol. 59, no. 2, pp. 848-857, Feb. 2012.
    [34] K. Akatsu, K. Narita, Y. Sakashita and T. Yamada, "Impact of flux weakening current to the iron loss in an IPMSM including PWM carrier effect," in Proceedings of 2009 IEEE Energy Conversion Congress and Exposition, 2009, pp. 1927-1932.
    [35] N. Denis, Y. Wu, S. Odawara and K. Fujisaki, "Study of the effect of load torque on the iron losses of permanent magnet motors by finite element analysis," in Proceedings of 2017 11th International Symposium on Linear Drives for Industry Applications (LDIA), 2017, pp. 1-5.
    [36] C. Dang, W. Wang, D. Wang, N. Tong and X. Chen, "Calculation and Analysis of Cogging Torque and End Copper Loss of Fractional Slot Concentrated Winding PMSM," in Proceedings of 2019 22nd International Conference on Electrical Machines and Systems (ICEMS), 2019, pp. 1-4.
    [37] Y. Liang, F. Zhao, K. Xu, W. Wang, J. Liu and P. Yang, "Analysis of Copper Loss of Permanent Magnet Synchronous Motor With Formed Transposition Winding," IEEE Access, vol. 9, pp. 101105-101114, 2021.
    [38] Y. Wang, W. Zhu and U. Schaefer, "Study on the real time driving cycles and its influence on design of the electrical motor of EV," in Proceedings of 2014 IEEE Conference and Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific), 2014, pp. 1-6.
    [39] 吳義利, 切換式電源轉換器原理與實用設計技術(實例設計導向)第三版, 文笙書局股份有限公司, 2018年10月
    [40] M. Salem, A. Jusoh, N. Rumzi, N. Idris and I. Alhamrouni, "Steady state and generalized state space averaging analysis of the series resonant converter," in Proceedings of 3rd IET International Conference on Clean Energy and Technology (CEAT) 2014, 2014, pp. 1-5.
    [41] A. Murthy and M. Badawy, "State space averaging model of a dual stage converter in discontinuous conduction mode," in Proceedings of 2017 IEEE 18th Workshop on Control and Modeling for Power Electronics (COMPEL),2017, pp.1-7.
    [42] M. N. Hussain, R. Mishra and V. Agarwal, "A Frequency-Dependent Virtual Impedance for Voltage-Regulating Converters Feeding Constant Power Loads in a DC Microgrid," IEEE Transactions on Industry Applications, vol. 54, no. 6, pp. 5630-5639, Nov.-Dec. 2018.
    [43] X. Feng, J. Liu and F. C. Lee, "Impedance specifications for stable DC distributed power systems," IEEE Transactions on Power Electronics, vol. 17, no. 2, pp. 157-162, Mar 2002.
    [44] L. Xing, F. Feng and J. Sun, "Optimal Damping of EMI Filter Input Impedance," IEEE Transactions on Industry Applications, vol. 47, no. 3, pp. 1432-1440, May-Jun 2011.
    [45]TEXAS INSTRUMENTS, “TMS320F2837Xd Dual-Core Microcontrollers “, Feb, 2021.

    無法下載圖示 校內:2027-08-22公開
    校外:2027-08-22公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE