簡易檢索 / 詳目顯示

研究生: 林伯勳
Lin, Po-Hsun
論文名稱: 具低記憶體存取與低複雜度之平行雙二元渦輪解碼器設計
Low Memory Access and Low Complexity Parallel Double-Binary Turbo Decoder Design
指導教授: 謝明得
Hsieh, Ming-Der
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 57
中文關鍵詞: 低記憶體存取低複雜度雙二元渦輪解碼器
外文關鍵詞: Low Memory Access, Low Complexity, Double Binary, Turbo Decoder
相關次數: 點閱:166下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 遞迴渦輪碼因其能提供靠近沈農極限(Shannon limit)的錯誤更正表現,被廣泛研究與應用在各種的無線通訊標準。在1999年,非單二元遞迴渦輪碼被證明編碼效能優於單二元遞迴渦輪碼,近年來在DVB-RCS、DVB-RCT、WiMax以及HomePlug_GP等通訊協定都選用雙二元遞迴渦輪編碼,雙二元渦輪解碼器在電路設計上比傳統單二元解碼器複雜許多,若欲符合各通訊協定中需求的輸出率(throughput),常需使用平行化處理架構。如何減少渦輪解碼器功率消耗並降低平行化的交織位址產生器複雜度,成為平行雙二元渦輪解碼器設計的重要課題。

    本篇論文結合反向式(reverse)與追回式(traceback)演算法實現雙二元渦輪解碼器。在保持傳統最大機率演算法解碼效能的情況下,以低複雜度運算來減少所需狀態記憶體存取(state memory access)位元數。另外提出平行式交織位址產生器(parallel interleaver address generator)設計,使用低複雜度之交錯排列位址運算,同步產生不同軟式輸入/輸出解碼器所需之輸入記憶體(input buffer)和外質記憶體(extrinsic information memory)存取位址,並合併外質資訊記憶體。實驗結果顯示,此解碼器具有較小的交錯排列位址產生器與外質資訊記憶體面積。混合反向式與追回式雙二元反向運算法可降低狀態記憶體存取功率。

    Convolutional turbo code is widely used in many wireless communication standards because it can provides error-correction performance near the Shannon capacity limit. The non-binary convolutional turbo code close to proven to have better coding gain than the single-binary convolutional turbo code in 1999. In recent years, DVB-RCS, DVB-RCT, WiMax and HomePlug_GP standards have chosen double-binary convolutional turbo code as their encoding methods. The circuit design for double-binary convolutional turbo decoder is more complex than that of the single binary one, and parallel processing is frequently applied to fit the required throughput in different standards. How to reduce the power consumption and the parallel interleaver complexity are essential to the turbo decoder design.

    This work presents a low memory access double-binary turbo decoder by combining the reverse and traceback algorithms. It reduces the bit number of state metric memory access by low complexity calculation and has no decoding performance loss. Moreover, a low complexity address generator for parallel interleaver design is proposed to access input buffer and extrinsic information memory banks simultaneously. The extrinsic information memory banks can be merged to reduce the cost. Experimental results show that this decoder achieves a smaller area in interleaver address generator and extrinsic information memory size. The proposed hybrid reverse and traceback method can lower the number of memory access, result in power saving during memory access.

    摘   要 iv ABSTRACT v 誌  謝 vi 目  錄 vii 表 目 錄 ix 圖 目 錄 x 第一章 緒論 1 1.1 研究動機 1 1.2 論文架構 2 第二章 背景知識介紹 3 2.1 渦輪編碼器模型 3 2.1.1 遞迴系統迴旋編碼器 3 2.1.2 交錯排列器 5 2.2遞迴渦輪解碼器模型 5 2.3 軟式輸入/輸出解碼演算法 6 2.3.1 最大事後機率演算法 7 2.3.2 最大對數最大事後機率演算法 9 2.3.3 對數最大事後機率演算法 9 2.3.4 可移動式視窗架構 10 2.3.5 單二元反向式運算 12 2.3.6 追回式運算 18 第三章 所提出之平行雙二元渦輪解碼器技術 20 3.1 高功率效益之軟式輸出/輸入解碼器 20 3.1.1 雙二元反向運算 20 3.1.2 改良式低複雜度雙二元反向運算法 22 3.1.3 混合反向式與追回式之雙二元反向運算法 26 3.2 低複雜度平行式交錯排列位址產生器 27 3.2.1 適用於HomePlug_GP標準之交錯排列器設計 27 3.2.2 外質資訊記憶體合併 29 3.3 比較與分析 29 3.3.1 效能比較 29 3.3.2 狀態記憶體存取效率比較 30 3.3.3 平行式交錯排列器複雜度比較 33 第四章 硬體架構之設計與實現 36 4.1 硬體架構 36 4.1.1 整體架構 36 4.1.2 軟式輸入/輸出解碼器 38 4.1.3 前饋式運算單元 39 4.1.4 狀態記憶體 40 4.1.5 混合反向式與追回式運算單元 41 4.1.6 低複雜度平行交錯排列位址產生器 44 4.2 驗證方法與時序分析 47 4.3 實現結果與比較 48 第五章 結論與未來展望 54 5.1 結論 54 5.2 未來展望 54 參考文獻 55

    [1] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit error-correcting coding and decoding: Turbo codes,” in Proc. IEEE Int. Conf. Commun. (ICC), May 1993, pp. 1064–1070.
    [2] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear codes for minimizing symbol error rate,” IEEE Trans. Inf. Theory, vol. IT-20, no. 2, pp. 284–287, Mar. 1974.
    [3] C. Berrou and M. Jezequel, “Non-binary convolutional codes for turbo coding,” Electron. Lett., vol. 35, no. 1, pp. 39–40, Jan. 1999.
    [4] I. Atluri. and T. Arslan, “Low power VLSI Implementation of MAP decoder for turbo codes through forward recursive calculation of reverse state metrics”, in Proc. IEEE Int. SOC Conf. (SOCC), Sep. 2003, pp. 408-411.
    [5] D. S. Lee and I. C. Park, “Low-power log-MAP decoding based on reduced metric memory access,” IEEE Trans. Circuits Syst. I , Reg. Papers, vol. 53, no. 6, pp. 1244–1253, Jun. 2006.
    [6] H. M. Choi, J. H. Kim, and I. C. Park, “Low-power hybrid turbo decoding based on reverse calculation,” IEICE Trans. Fundam Electron. Comm. Comput. Sci., vol. E89-A, no. 3, pp. 782–789, Mar. 2006.
    [7] T. H. Tsai, C. H. Lin, and A. Y. Wu, “A memory-reduced log-MAP kernel for turbo decoder,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), 2005, pp. 1032–1035.
    [8] C. H. Lin, C. Y. Chen, A. Y. Wu, and T.-H. Tsai, “Low-power memory reduced traceback MAP decoding for double-binary convolutional turbo decoder,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 56, no. 5, pp. 1005–1016, May 2009.
    [9] J. H. Kim and I. C. Park, “Double-binary circular turbo decoding based on border metric encoding,” IEEE Trans. Circuits Syst. II , Exp. Briefs, vol. 55, no. 1, pp. 79–83, Jan. 2008.
    [10] J. H. Kim and I. C. Park, “Bit-level extrinsic information exchange method for double-binary turbo codes,” IEEE Trans. Circuits Syst. II , Exp. Briefs, vol. 56, no. 1, pp. 81–85, Jan. 2009.
    [11] Y. Sun, Y. Zhu, M. Goel, and J. Cavallaro, “Configurable and scalable high throughput turbo decoder architecture for Multiple 4G wireless standards,” in Proc. 19th IEEE Int’l Conf. on Application-specific Systems, Architectures, and Processors (ASAP), Leuven, Belgium, July 2008, pp.209-214.
    [12] Z. Wang, and Q. Li, “Very low-complexity hardware interleaver for turbo decoding,” IEEE Trans. Circuits Sys. II, Exp. Briefs, vol. 54, no. 7, July 2007.
    [13] J. Hagenauer and P. Hoeher, "A Viterbi algorithm with soft-decision outputs and its applications," in Proc. IEEE Global Telecom. Conf. (GLOBECOM), vol. 3, Nov. 1989, pp. 1680-1686.
    [14] J. Hagenauer and L. Papke, “Decoding turbo codes with the soft output Viterbi algorithm (SOVA),” in Proc. IEEE Int. Symp. Information Theory (ISIT’94), Trondheim, Norway, June 1994, p. 164.
    [15] P. Robertson, E. Villebrun, and P. Hoeher, “A comparison of optimal and sub-optimal MAP decoding algorithms operating in the log domain,” in Proc. IEEE Int. Conf. Commun. (ICC), 1995, pp. 1009–1013.
    [16] P. Robertson, P. Hoeher, and E. Villebrun, “Optimal and sub-optimal maximum a posteriori algorithms suitable for turbo decoding,” European Trans. Telecommun., vol. 8, pp. 119–125, Mar./Apr. 1997.
    [17] A. J. Viterbi, “An intuitive justification and simplified implementation of the MAP decoder for convolutional codes,” IEEE J. Sel. Areas Commun., vol. 16, no. 2, pp. 260–264, Feb. 1998.
    [18] C. M. Wu, M. D. Shieh, and C. H. Wu, “Memory arrangements in turbo decoders using sliding-window BCJR algorithm,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), May 2002, pp. V-557–V-560.
    [19] C. M. Wu, M. D. Shieh, C. H. Wu, Y.-T. Hwang, and J.-H. Chen,“VLSI architectural design tradeoffs for sliding-window Log-MAP decoders,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 13, no.4, pp. 439–447, Apr. 2005.
    [20] A. Worm, H. Lamm, and N. Wehn, “A high-speed MAP architectures with optimized memory and power consumption,” in Proc. IEEE Workshop Signal Processing Syst. (SiPS), 2000, pp. 265–274.
    [21] M. M. Mansour and N. R. Shanbhag, “VLSI architectures for SISO-APP decoders,” IEEE Trans. Very Large Scale Integrat. (VLSI) Syst., vol. 11, no. 4, pp. 627–650, Aug. 2003
    [22] Z. Wang, Z. Chi, and K. Parhi, “Area-efficient high-speed decoding schemes for turbo decoders,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 10, no. 6, pp. 902–912, Dec. 2002
    [23] S. G. Lee, C. H. Wang, and W. H. Sheen,“ Architecture Design of QPP Interleaver for parallel Turbo Decoding,” in Proc. IEEE Vehicular Tech. Conf. (VTC), 2010, pp. 1-5.
    [24] J. H. Kim and I. C. Park, “A unified parallel radix-4 turbo decoder for mobile WiMAX and 3GPP-LTE,” in Proc. IEEE Custom Integr. Circuits Conf. (CICC), Sep. 2009, pp. 487–490.
    [25] J. H. Kim and I. C. Park, “A 50Mbps double-binary turbo decoder for WiMAX based on bit-level extrinsic information exchange,” in Proc IEEE Asian Solid-State Circuits Conf. ( A-SSCC), 2008, pp. 305–308.
    [26] A. Nimbalker, Y. Blankenship, B. Classon, and T. K. Blankenship,“ARP and QPP interleavers for LTE turbo coding,” in Proc. IEEE Wireless Commun. and Networking Conf. (WCNC), Mar. 2008., pp. 1032–1037.

    下載圖示 校內:2016-08-30公開
    校外:2016-08-30公開
    QR CODE