簡易檢索 / 詳目顯示

研究生: 趙仁駿
Chao, Jen-Chun
論文名稱: 利用光配向研製液晶偏振光柵及其光學模擬之研究
Fabrication and Simulation of Liquid Crystal Polarization Grating Using Photoalignment Method
指導教授: 傅永貴
Fuh, Ying-Guey Andy
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 77
中文關鍵詞: 光配向液晶偏振光柵有限差分時域法
外文關鍵詞: finite-difference time-domain, liquid crystal, polarization grating, FDTD, photoalignment
相關次數: 點閱:104下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在此論文中,我們主要是討論使用偶氮染料參雜的聚乙烯醇膜以光配向方法來做偏振光柵。首先是將氬離子雷射分為兩道光後將此兩道光轉變為兩道相反的圓偏振光,之後以此兩道光打在光配向膜上,兩道光將會因為干涉而使配向膜達到連續轉動配向的效果,這種光柵稱為偏振光柵。之後,我們以氦氖雷射探測偏振光柵繞射特性並且量測繞射零階與一階的強度與偏振狀態,並且使用有限差分時域法模擬這些特性,實驗結果與理論符合。
    有限差分時域法是將瑪克士威爾方程式以數值方式表示,也因如此,在空間中或在物質中,光行進的行為將可被呈現。實驗中所使用的液晶是一種單光軸材料,其折射率可以以介電常數來代表。在有限差分時域法中將不同指向的液晶以介電常數代入後,液晶光學模擬得以進行。之後再藉由傅立葉轉換將遠場各階繞射強度與偏振算出。為了準確的模擬偏振光柵的繞射行為,液晶配向不完美的部分亦被考量在內。

    A liquid crystal polarization grating (LCPG) is fabricated based on the photoalignment of azo-dye-doped polyvinyl alchohol film. Pumping two argon-ion laser beams having mutually orthogonal circular polarization on the film to form continuous rotation alignment of LCs, a polarization grating is fabricated. The diffraction characteristics of the fabricated LCPG are investigated by probing it with a helium-neon laser. The polarization and intensity of the zeroth- and first-order of the diffracted beams are measured. Then these characteristics of the diffracted beams are compared and consistent with theory simulated using the finite-difference time-domain (FDTD) method.
    The FDTD method is a numerical method for modeling the Maxwell’s equations. It can be used to describe the light propagation in space or in mediums. Since the liquid crystal used in the experiment is a uniaxial material, we set the dielectric tensor to represent the refractive index of the liquid crystal with different orientations in FDTD model. The light propagation within the liquid crystal can be simulated. Using Fourier transform, the diffraction characteristics of the LCPG are calculated.

    摘要 Ⅰ Abstract Ⅱ Acknowledgement Ⅲ Contents Ⅳ List of Figures Ⅶ List of Tables ⅩⅠ Chapter 1 Liquid Crystal 1 1.1 What are Liquid Crystals? 1 1.2 Categories of Liquid Crystals 3 1.3 Liquid Crystal Phases 4 1.3.1 Nematic Phase (N) 4 1.3.2 Cholesteric Phase (N*) 5 1.3.3 Smectic Phase (Sm) 6 1.4 Physics of Liquid Crystal 7 1.4.1 Birefringence 7 1.4.2 Temperature Effect on Refractive Indeces 9 1.4.3 Elastic Continuum Theory 10 1.4.4 Electric Field Effect 11 Chapter 2 Theory 13 2.1 Photoalignment 13 Photo-isomerization 13 2.2 Holography 14 2.2.1 Recording Process 15 2.2.2 Reconstruction 16 2.3 Laser-induced Holographic Gratings 18 2.4 Numerical Integration 22 2.5 Fourier Theorem 22 2.5.1 Fourier Transform 23 2.5.2 Discrete Fourier Transform 24 Chapter 3 Experiment 26 3.1 Materials Used 26 3.2 Cell Preparation 28 3.3 Polarization Grating’s (PG) Fabricating Process 29 3.4 Cell Observation 30 3.4.1 Correction 31 3.4.2 Discussion of the Imperfect Structure 32 3.5 Measurements of Diffractive Polarizations and Efficiencies 33 Chapter 4 Simulation Methods 35 4.1 Introduction 35 4.2 Jones Matrix Method 35 4.2.1 Jones Matrix Manipulation 37 4.2.2 Formulation of One Dimensional (1D) LC Cell 38 4.2.3 Formulation of Two Dimensional (2D) LC Cell and the Diffraction Simulation 39 4.3 Finite-Difference Time-Domain (FDTD) Method 40 4.3.1 Fundamental Concepts 40 4.3.2 One Dimensional (1D) Formulation 41 Courant Number 42 4.3.3 Three Dimensional (3D) Formulation 44 4.3.4 Choice of Physical and Simulation Parameters 48 4.3.5 Dielectric Tensor of LC and Rotation Matrix 49 An Alternative Method 51 4.3.6 Absorbing Boundary Conditions for FDTD Method 52 4.3.7 Periodic Structure and Periodic Boundary Conditions 53 Test of the Periodic Boundary Conditions 53 4.3.8 Near-to-Far-Field Transformation 54 Simulation of Diffraction Efficiencies of a Grating 55 4.3.9 Simulation of the Wave Propagation in the 90° Twist Nematic (TN) LC Cell 56 4.4 Choice of Optical Simulation Methods 58 Chapter 5 Simulations 59 5.1 Simulation of the Twist Nematic (TN) Grating 59 5.2 Simulation of the Polarization Grating (PG) 60 5.3 Simulation of the Polarization Grating (PG) Having One Unidirectional Aligning Surface 68 5.3.1 Perfect Structure 68 5.3.2 Imperfect Structure 69 5.3.3 Comparisons and Discussions 71 Chapter 6 Conclusions and Prospections 73 6.1 Conclusions 73 6.2 Prospections 73 Reference 75

    [1] Peter J. Collings and Michael Hird, “Introduction to Liquid Crystals," Taylor & Francis (1997).
    [2] Iam-Choon Khoo and Shin-Tson Wu, “Optics and Nonlinear Optics of Liquid Crystal,” World Scientific (1997).
    [3] Shin-Tson Wu and Deng-Ke Yang, “Reflective Liquid Crystal Displays,” Wiley (2002).
    [4] A. Yariv, “Quantum Electronics,” John Wiley & Sons Press, New York (1989).
    [5] I. Haller, “Thermodynamics and static properties of liquid crystals,” Prog. Solid State Chem. 10, 103 (1975).
    [6] Iam-Choon Khoo, “Liquid Crystals-Physical Properties and Nonlinear Optical Phenomena,” John Wiley  Sons Press, New York (1995).
    [7] P. G. de Gennes, “The Physics of of Liquid Crystals,” Clarendon, Oxford (1974).
    [8] L. M. Blinov and V. G. Chigrinov, “Electrooptic Effects in Liquid Crystal Materials,” Springer-Verlag Publishing Co., New York (1994).
    [9] Kohki Takatoh, Masaki Hasegawa, Mitsuhiro Koden, Nobuyuki Itoh, Ray Hasegawa, Masanori Sakamoto, “Alignment Technologies and Applications of Liquid Crystal Devices,” Taylor & Francis (2005).
    [10] Wayne M. Gibbons, Paul J. Shannon, Shao-Tang Sun, and Brian J. Swetlin, Nature 351, 49-50, 1991.
    [11] M. Hasegawa and Y. Taira, J. Photopolymer Science and Technology, 8, 703, 1995.
    [12] Michinon Nishikawa, Tamas Kosa and John L. West., Jpn. J. Appl. Phys., 38 334, 1999.
    [13] Martin Schadt, Klaus Schmitt, Vladimir Kozinkov andVladimir Chigrnov, Jpn. J. Appl. Phys., 31, 2155, 1992.
    [14] O. Yaroshchuk, L. G. Cada, M. Sonpatki, and L.-C. Chien, Apl, 79, 30, 2001.
    [15] Eugene Hecht, “Optics,” Addison Wesley, Berlin, 1998.
    [16] Dennis Gabor, Nature, 161, 777, 1948.
    [17] H. J. Eichler, P. Gunter and D. W. Pohl, “Laser-Induced Dynamic Gratings,” Pringer-Verlag, Berlin, 1985.
    [18] P. Yeh, “Introduction of Photorefractive Nonlinear Optics,” John Wiley & Sons, New York, 1993.
    [19] N. K. Viswanathan, S. Balasubramanian, L. Li, S. K. Tripathy and J. Kumar, Jpn. J. Appl. Phys. 38, 5928 (1999).
    [20] Joseph W. Goodman, “Introduction to Fourier Analysis,” The Mcgraw-Hill Companies, Inc. Singapore (1996).
    [21] 游漢輝,“傅氏光學,”滄海書局 (2006).
    [22] Michael J. Escuti and W. Michael Jones, “Polarization-Independent Switching With High Contrast From A Liquid Crystal Polarization Grating,” 39.4, pp. 1443-1446, SID 06 DIGEST.
    [23] Suraj P. Gorkhali, Sylvain G. Cloutier, and Gregory P. Crawford, “Stable polarization gratings recorded in azo-dye-doped liquid crystals,” Appl. Phys. Lett. 88, 2551113 (2006).
    [24] Hakob Sarkissian, Svetlana V. Serak, Nelson V. Tabiryan, Leon B. Glebov, Vasile Rotar, and Boris Ya. Zeldovich, “Polarization-controlled switching between diffraction orders in transverse-periodically aligned nematic liquid crystals,” OPTICS LETTERS, Vol. 31, No. 15, August 1, 2006.
    [25] C. Provenzano, P. Pagliusi, and G. Cipparrone, “Highly efficient liquid crystals based diffraction grating induced by polarization holograms at the aligning surfaces,” Appl. Phys. Lett. 89, 121105 (2006).
    [26] Grant R. Fowles, “Introduction to Modern Optics,” 2nd edition, Holt, Rinehart and Winston, Inc.
    [27] A. Lien, “Extended Jones matrix representation for the twisted nematic liquid-crystal display at oblique incidence,” Appl. Phys. Lett. 57 (26), 24 December 1990.
    [28] D. W. Berreman, J. Opt. Soc. Am. 62, 502 (1972).
    [29] A. Taflove, “Computational Electromagnetic: The Finite-Difference Time-Domain Method,” Artech House,1995.
    [30] Dennis M. Sullivan, “Electromagnetic Simulation Using the FDTD Method,” Wiley-IEEE Press.
    [31] 丁啟倫, “運用二維時域有限差分法分析液晶元件光學性質,”光電科學與工程研究所,成功大學 (2005).
    [32] Pochi Yeh, Claire Gu, “Optics of Liquid Crystal Displays”, Wiley Interscience, New York (1999).
    [33] Bayliss, A., M. Gunzburger, and E. Turkel, “Boundary conditions for wave-like equations,” Comm. Pure Appl. Math., Vol. 23, 1980, pp. 707-725.
    [34] Bayliss, A., M. Gunzburger, and E. Turkel, “Boundary conditions for the numerical solution of elliptic equations in exterior regions, “ SIAM J. Applied Math., Vol. 42, 1982, pp. 430-451.
    [35] Enquist, B., and A. Majda, “Absorbing boundary conditions for the numerical simulation of waves,” Mathematics of Computation, Vol. 31, 1977, pp. 629-651.
    [36] Higdon, R. L., “Absorbing boundary conditions for difference approximations to the multi-dimensional wave equations,” Mathematics of Computation, Vol. 47, 1986, pp. 437-459.
    [37] Higdon, R. L., “Numerical absorbing boundary conditions for the wave equation,” Mathematics of Computation, Vol. 49, 1987, pp. 65-90.
    [38] Liao, Z. P., H. L. Wong, B. P. Yang, and Y. F. Yuan, “A transmitting boundary for the transient wave analyses,” Scientia Sinica (series A), Vol. XXVII, 1984, pp. 1063-1076.
    [39] Ramahi, O. M., “The complementary operators method in FDTD simulations,” IEEE Antennas Propagat. Magazine, Vol. 39, No. 6, Dec. 1997, pp. 33-45.
    [40] Ramahi, O. M., “The concurrent complementary operators method for FDTD mesh truncation,” IEEE Trans. Antennas Propagat., Vol. 46, 1998, pp. 1475-1482.
    [41] Berenger, J. P., J., “Computational Physics,” 141. 185. (1994).
    [42] Chulwoo Oh, Ravi Komanduri, and Michael J. Escuti, “FDTD and Elastic Continuum Analysis of the Liquid Crystal Polarization Grating,” P-167, SID 2006 DIGEST.
    [43] Chulwoo Oh, Ravi Komanduri, and Michael J. Escuti, “FDTD analysis of 100%-Efficient Polarization-Independent Liquid Crystal Polarization Gratings,” Proc. Of SPIE Vol. 6332 633212-1.
    [44] S. T. Wu, Yi Shin Chen, Jian Hong Guo, and Andy Ying-Guey Fuh, “Fabrication of Twist Nematic Gratings Using Polarization Hologram Based on Azo-Dye-Doped Liquid Crystals,” Jpn. J. Appl. Phys., Vol. 45, No. 12, 2006, pp. 9146-9151.

    下載圖示 校內:2008-01-30公開
    校外:2008-01-30公開
    QR CODE