簡易檢索 / 詳目顯示

研究生: 簡秀真
Jian, Shiou-Jen
論文名稱: 氧化鋅薄膜特性及其在液體感測器上之應用
Characterization of ZnO Thin Film and Its Applications on Liquid Sensors
指導教授: 朱聖緣
Chu, Sheng-Yuan
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 79
中文關鍵詞: 氧化鋅液體感測器拉福波
外文關鍵詞: Znic Oxide, Love wave, liquid sensor
相關次數: 點閱:64下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要是以反應式射頻磁控濺鍍法,研究在石英(ST-cut)上成長(002)軸向的氧化鋅薄膜,我們設計不同的製程參數:改變基板溫度、控制氬氣與氧氣的比例、腔體內壓力及濺鍍功率,探討對薄膜特性的影響。利用X光繞射儀(X-ray diffraction)、掃描式電子顯微鏡(SEM)、原子力顯微鏡(AFM)檢測薄膜晶體的結構、內應力、與薄膜表面粗糙度。
    我們在低基板溫度與低濺鍍功率的環境下,可成長單一C軸軸向之氧化鋅薄膜以適用於拉福波感測器。但是在64° 鈮酸鋰(LiNbO3)上成長氧化鋅薄膜時,因為其本身的波傳模式為洩漏波形式,利用本文所求得之最佳濺鍍參數,感測特性並不明顯。
    另外,成長不同厚度的氧化鋅薄膜在石英基板上以製成拉福波元件,研究不同膜厚對元件波速、機電耦合常數和頻率溫度係數的影響,當波長為40mm,膜厚為1.8mm時可得到最大的機電耦合常數;膜厚為2.6mm時,頻率溫度係數接近於0。為了提高拉福波感測器的敏感度,研究濺鍍時不同基板溫度對元件黏滯係數敏感性之影響:成長薄膜在不加溫的基板上比在加溫基板上可得到較高敏感性的元件,波長為40mm,膜厚為1.8mm時,敏感度最高,遠大於二氧化矽與石英基板結構的拉福波感測器。若以氧化鋅薄膜應用在共振濾波器上,其薄膜特性要求完全不同於在感測器上的應用,經由調變不同製程參數,可分別得到適用於濾波器和感測器的氧化鋅薄膜。

    Poly-crystal ZnO films with c-axis (002) orientation have been successfully grown on the ST-cut quartz substrate by RF magnetron sputtering technique. The deposited films were characterized as a function of deposition temperature, argon-oxygen gas flow ratio, the chamber pressure and RF power. Crystalline structures, stress and surface roughness characteristics of the films were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM) measurement.
    The preferred c-axis orientation of ZnO films can be grown at low RF power and low substrate temperature. And we can grow the film on the substrate (ZnO/IDT/Quartz) as a Love wave sensor. But when we grow the ZnO films on the 64° LiNbO3 substrate, it’s not useful as a Love wave sensor. The reason is that the wave transmission of 64° LiNbO3 is Leaky wave.
    An experimental study of Love wave devices based on ZnO/90° rotated ST-cut quartz with different thickness of ZnO films is also presented. Phase velocity, electromechanical coupling coefficient and temperature coefficient of frequency have been studied as a function of layer thickness. The maximum electromechanical coupling coefficient is obtained for 1.8mm ZnO film and near zero temperature coefficient of frequency is obtained for 2.6mm ZnO film for a wavelength of 40mm, respectively. In order to fabricate sensors with higher sensitivity, the effect of substrate temperature on the sensitivity of viscosity were investigated. The Love wave sensor has higher sensitivity for ZnO films sputtered on unheated substrate than that of on heated substrate. The sensitivity of the ZnO/Quartz structure with film thickness of 1.8mm for a wavelength of 40mm is much larger than SiO2/Quartz structure. The required characteristics of ZnO film for resonator filter and sensor applications are contrariwise. Preferred deposition condition was found to give good film quality for resonator filter and sensor applications, respectively.

    中文摘要....................................................Ⅰ 英文摘要....................................................Ⅲ 圖表目錄....................................................Ⅴ 第一章 緒論....................................................01 第二章 原理....................................................04 2.1 壓電原理....................................................04 2.1.1 正逆壓電效應....................................................04 2.2 表面聲波元件的基板材料....................................................05 2.2.1 機電耦合係數....................................................05 2.2.2 表面聲波相速度....................................................06 2.2.3 溫度效應....................................................07 2.3 氧化鋅薄膜的結構和特性....................................................07 2.4 濺鍍原理....................................................08 2.4.1 電漿原理....................................................09 2.4.2 射頻濺鍍系統....................................................10 2.5 表面聲波....................................................11 2.5.1 雷利表面聲波....................................................11 2.5.2 剪力水平聲波....................................................11 2.5.3 表面漂移塊體波....................................................12 2.5.4 拉福表面聲波....................................................13 第三章 實驗過程及原理....................................................14 3.1 實驗流程....................................................14 3.2 摻雜鋰的氧化鋅靶材配置....................................................15 3.2.1 電阻率分析....................................................15 3.2.2 配置摻雜鋰的氧化鋅靶材....................................................16 3.3 基板的選擇及清洗....................................................16 3.3.1 ST切面石英....................................................17 3.3.2 64°鈮酸鋰....................................................17 3.3.3 基板的清洗....................................................17 3.4 樣品的準備及實驗過程....................................................18 3.5 氧化鋅薄膜成長....................................................18 3.5.1 影響濺鍍的因素....................................................19 3.6 薄膜結構的品質分析....................................................19 3.6.1 X-Ray分析....................................................19 3.6.2 SEM和AFM的分析....................................................20 3.6.3 應力分析....................................................20 3.7 表面聲波元件製程....................................................22 3.8 拉福波感測器的量測系統....................................................23 3.9 測試溶液....................................................24 第四章 實驗結果與討論....................................................25 4.1 摻雜鋰的氧化鋅靶材....................................................25 4.2 濺鍍參數對氧化鋅薄膜物理結構的影響....................................................26 4.2.1 影響濺鍍品質的因素....................................................26 4.3 XRD的分析....................................................27 4.3.1 腔體內壓力對成長氧化鋅薄膜之影響....................................................27 4.3.2 氬氣與氧氣的氣體流量比對成長氧化鋅薄膜的影響....................................................28 4.3.3 射頻濺鍍功率對成長氧化鋅薄膜之影響....................................................29 4.3.4 基板溫度對成長氧化鋅薄膜之影響....................................................29 4.4 SEM分析....................................................30 4.5 AFM分析....................................................31 4.6 電阻率的分析....................................................32 4.7 拉福波感測器的分析....................................................33 4.7.1 相速度....................................................33 4.7.2 敏感性....................................................33 4.7.3 溫度頻率係數(TCF)...............................................33 4.7.4 拉福波元件的頻率響應....................................................34 4.7.5 基板溫度對感測性的影響....................................................34 4.7.6 以鈮酸鋰為基板的拉福波感測器....................................................36 第五章 結論....................................................37 參考文獻....................................................40 附表與附圖....................................................44 圖表目錄 表1.1 氧化鋅材料在聲波元件上的應用....................................................44 表1.2 為表面聲波常用的基板材料特性參數....................................................45 表2.1 雷利表面波元件的壓電參數及其應用....................................................46 表2.2 ST-cut石英在SSBW與64°鈮酸鋰在洩漏波的傳播常數....................................................47 表4.1 濺鍍時的最佳參數....................................................48 圖2-1(a) 正壓電效應....................................................49 圖2-1(b) 逆壓電效應....................................................49 圖2.2 基本的表面聲波延遲線結構....................................................50 圖2.3 表面聲波元件的指叉狀電極結構圖....................................................51 圖2.4 氧化鋅晶體的材料結構....................................................52 圖2.5 射頻濺鍍系統簡圖....................................................53 圖2.6 拉福波形式的波導結構....................................................54 圖3.1 濺鍍時的操作程序....................................................55 圖3.2 氧化鋅粉末的JCPDS資料....................................................56 圖3.3 熱應力和內應力與沈積溫度的關係....................................................57 圖3.4 表面聲波元件製作IDTs的過程....................................................58 圖3.5 舉離法的處理過程....................................................59 圖3.6 拉福波感測器結構....................................................60 圖4.1 氧化鋅薄膜的電阻率與氧化鋅靶材摻雜Li2CO3的濃度關係圖....................................................61 圖4.2 欲得到C軸軸向的氧化鋅薄膜其沈積速率與基板溫度的關係圖....................................................62 圖4.3 氧化鋅薄膜在不同的腔體壓力之XRD圖形....................................................63 圖4.4 氧化鋅薄膜在不同的腔體壓力之FWHM圖形....................................................63 圖4.5 氧化鋅薄膜在不同的氧氣比例之XRD圖形....................................................64 圖4.6 氧化鋅薄膜在不同的氧氣比例之FWHM圖形....................................................64 圖4.7 氧化鋅薄膜在不同的濺鍍功率之XRD圖形....................................................65 圖4.8 氧化鋅薄膜在不同的濺鍍功率之FWHM圖形....................................................65 圖4.9 氧化鋅薄膜在基板加溫和不加溫之XRD圖形....................................................66 圖4.10 氧化鋅薄膜在不同的基板溫度之FWHM圖形....................................................66 圖4.11 濺鍍時基板沒有加溫和加溫的SEM分析圖....................................................67 圖4.12 濺鍍時基板沒有加溫和加溫的SEM側視分析圖....................................................68 圖4.13 氧化鋅薄膜在基板沒有加溫和加溫至300℃的AFM分析圖....................................................69 圖4.14 薄膜表面粗糙度與基板溫度的關係圖....................................................70 圖4.15 薄膜表面粗糙度與不同氧氣比例的關係圖....................................................70 圖4.16 氧化鋅薄膜電阻率與不同氧氣比例的關係圖....................................................71 圖4.17 拉福波相速度與氧化鋅薄膜t /l的關係圖....................................................72 圖4.18 拉福波元件的敏感性與氧化鋅薄膜t /l的關係圖....................................................72 圖4.19 拉福波元件的TCF值與氧化鋅薄膜t /l的關係圖....................................................72 圖4.20 拉福波元件在不同的濺鍍基板溫度其頻率響應關係圖....................................................73 圖4.21 拉福波元件在不同的氧氣比例下其頻率響應關係圖....................................................74 圖4.22 拉福波元件在不同的基板溫度其靈敏性的關係圖....................................................75 圖4.23 拉福波元件在不同基板溫度下不同體積百分比的甘油與相位移之關係圖(ZnO/IDT/Quartz)....................................76 圖4.24 拉福波元件的插入損失的相位移與不同體積百分比的甘油之關係圖(ZnO/IDT/Quartz)....................................77 圖4.25 拉福波元件在不同基板溫度下不同體積百分比的甘油與相位移之關係圖(ZnO/IDT/LiNbO3)....................................78 附錄 壓電材料特性參數表....................................................79

    [1] S. Wanuga, T. A. Midford and J. P. Dietz, Ultrasonics Symposium, 1965
    [2] G. A. Rozgonyi and W. J.Polito, Preparation of ZnO Thin films by Sputtering of the Compound in oxygen and argon, Appl. Phy. Lett. 8, p. 220-221, 1966
    [3] N. F. Foster and G. A. Rozgonyi, Zinc Oxide Films Transducers, Appl. Phy. Lett. 8, p. 221-223, 1966
    [4] A. J. DeVries and R. Adler, Case History of a Surface-Wave TV IF Filter for Color TV Receivers, Proc. IEEE, 64, p. 671-676, 1976
    [5] R. M. Hays and C. S. Hartmann, Surface-Acoustic-Wave Devices for Communication, Proc. IEEE, 64, p. 652-669, 1976
    [6] M. N. Kamalasanan and Subhas Chandra, Sol-gel synthesis of ZnO thin films, Thin Solid Films 288, p. 112-115, 1996
    [7] Paraguay F.D., Estrada W.L., Acosta D.R.N., Andrade E. and Miki-Yoshida M., Growth, Structure and Optical Characterization of High Quality ZnO Thin Films Obtained by Spray Pyrolysis , Thin Solid Films 350, p. 192-202, 1999
    [8] Nakamura Kiyoshi, Shoji Tatsuya and Kang Hee-Bog, ZnO Film Growth on (011 Over-BAR 2) LiTaO3 by Electron Cyclotron Resonance-Assisted Molecular Beam Epitaxy and Determination of its Polarity, Japanese Journal of Applied Physics, Part 2, 6, p. L534-L536, 2000
    [9] Minami Tadatsugu, Sonohara Hideo, Takata Shinzo and Sato Hirotoshi, Transpartent and Conductive ZnO Thin Films Prepared by Atomsphreic-Pressure Chemical Vapor Deposition Using Zinc Acetylacetonate, Japanese Journal of Applied Physics, Part 2: 5B, p. L743-L746, 1994
    [10] S. Maniv and A. Zangvil, Controlled Texture of reactively RF-Sputtered ZnO Thin Films, Journal of Applied Physics 5, p. 2787-2792, 1978
    [11] Mu-Shiang Wu, Wen-Ching Shih and Woo-Hu Tsai, Growth of ZnO Thin Films on Interdigital Transducer/Corning 7059 Glass Substrate by Two-Step Fabrication Methods for Surface Acoustic Wave Applicatons, J. Phys D: Appl. Bhys. 31, p. 943-950, 1978
    [12] Ken-ya Hashimoto, Shotaro Ogawa, Akinori Nonoguchi, Tatsuya Omori and Masatsune Yamaguchi, Preparation of Piezoelectric ZnO Films by Target Facing Type of Sputtering Method, IEEE Ultransonics Symp. Proc. p. 207-212, 1998
    [13] K. B. Sundaram and A. Khan, Characterization and Optimization of Zinc Oxide Films By RF Magnetron Sputtering, Thin Solid Films 295, p. 87-91, 1997
    [14] Vinay Gupta and Abhai Mansingh, Influence of Postdeposition Annealing on The Structural and Optical Properties of Sputtered Zinc Oxide Film, Journal of Applied Physics 2, p. 1063-1073, 1996
    [15] 莊達人編著,VLSI製造技術,高立, p. 845-870, 2000
    [16] Frans C. M. Van De Pol, Thin-Film ZnO¾Properties and Applications, Ceramic Bulletin, 69 (12), p. 1959-1965, 1990
    [17] Jilian W. Gardner, Vijay K. Varadan and Osama O. Awadelkarim, Microsensors, MEMS, and Smart Devices, Wiley, p. 303-316, 2001
    [18] J. K. Srivastava, Lily Agarwal, and A. B. Bhattachryya, Electrical Characteristics of Lithium-doped ZnO Films, J. Electrochem. Soc. 136 (136) , p. 3414, 1989
    [19] P. Bonasewicz, W. Hirschwald and Neumann, Influence of surface processes on electrical, photochemical, and thermodynamical properties of zinc oxide films,, J. Electrochem. Soc. 133 (11), p. 2270, 1986
    [20] Fred S., Hickernell, Measurement techniques for evaluating piezoelectric thin films, IEEE Ultransonics Symp. Proc. p. 235-242, 1996
    [21] Vinay Gupta and Abhai Mansingh, Influence of Postdeposition Annealing on The Structural and Optical Properties of Sputtered Zinc Oxide Film, Journal of Applied Physics 80 (2), p. 1063-1073, 1996
    [22] John A. Thornton and D. W. Hoffman, Stress-Related Effects in Thin Films, Thin Solid Films, 171, p. 5-31, 1989
    [23] Jwo-Huei Jou, Min-Yung Han and Duen-Jen Cheng, Substrate dependent internal stress in sputtered zinc oxide thin films, Journal of Applied Physics 71, 9, p. 4333-4336, 1992
    [24] Falk Herrmann, Manfred Weihnacht and Stephanus Büttgenbach, Properties of sensors based on Shear-Horizontal surface acoustic waves in LiTaO3/SiO2 and quartz/SiO2 structures, IEEE Trans. Ultrasonics Freq. Control, UFFC-48, p. 268-273, 2001
    [25] W. Richard Smith, Henry M. Gerard, Jeffrey H. Collins, Thomas M. Reeder and Herbert J. Shaw, Analysis of interdigital surface wave transducers by use of an equivalent circuit model, IEEE Trans. on Microwave Theory and Techniques, 17, p. 856-864, 1969
    [26] F. Herrmann, M. Weihnacht and S. Büttgenbach, Properties of Shear-horizontal surface acoustic waves in different layered quartz-SiO2 structures, Ultrasonics 37, p. 335-341, 1999
    [27] Chin-Chong Tseng, Elastic surface wave on free surface and metallized surface of CdS, ZnO, and PZT-4, Journal of Applied Physics 38 (11), p. 4281-4283, 1967
    [28] Osamu Yamazaki, Tsuneo Mitsuyu and Kiyotaka Wasa, ZnO Thin-Film SAW Devices, IEEE Transactions on Sonics and Ultrasonics SU-27, NO.6, p. 369, 1980
    [29] E. D. Kolb and R. A. Laudies, Hydrothermally Grown ZnO Crystals of Low and Intermediate Resistivity, Journal of the American Ceramic Society 49 (6), p. 302, 1966
    [30] D. L. Raimondi and E.Kay, “High Resistivity Transparent ZnO Thin Films”, The Journal of Vacuum Sicence and Technology, 7, p. 96-99, 1969
    [31] F. Herrmann, M. Weihnacht and S. Büttgenbach, Properties of Shear-horizontal surface acoustic waves in different layered quartz-SiO2 structures, Ultrasonics 37, p. 335-341, 1999
    [32] Z. Wang, J. D. N. Cheeke, and C. K. Jen, Sensitivity analysis for Love mode acoustic gravimetric sensor, Appl. Phys. Lett. 64(22), p. 2940-2942, 1994
    [33] 許正源,工業材料119期, p. 79-87, 1996
    [34] K. Ohji, T. Tohda, K. Wasa and S. Hayakawa, Highly Oriented ZnO Films by rf-sputtering of Hemispherical Electrode System, Journal of Applied Physics 47, p. 1726-1728, 1976
    [35] B. A. Auld, Acoustic fields and waves in solids, Vol 1&2, Krieger, 1990
    [36] Markku Ylilammi, Juha Ella, Meeri Partanen and Jyrki Kaitila, Thin film bulk acoustic wave filter, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, v 49, n 4, p. 535-539, 2002
    [37] Michio Kadota and Takeshi Kitamura, Influence of leaky surface acoustic wave velocity of glass substrates on frequency variation of ZnO/glass SAW filters, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, v 46, n 4, p. 817-822, 1999
    [38] Soo-Hyung Seo, Wan-Chul Shin and Jin-Seok Park, A novel method of fabricating ZnO/diamond/Si multilayers for surface acoustic wave (SAW) device applications, Thin Solid Films, v 416, n 1-2, p. 190-196, 2002
    [39] P. Wu, N. W. Emanetoqlu, X. Tonq and Y. Lu, Temperature compensation of SAW in ZnO/SiO2/Si structure, Proceedings of the IEEE Ultrasonics Symposium, v 1, p. 211-214, 2001
    [40] M. H. Lee, S. M. Chanq, C. K. Park, J. B. Lee and J. S. Park, Characterization of ZnO/DLC/Si SAW devices using FCVA-produced DLC films, Proceedings of the Annual IEEE International Frequency Control Symposium, p. 70-73, 2002
    [41] Sanq-Ho Kim, Jae-Sunq Lee, Hyun-Chul Choi and Yonq-Hyun Lee, Fabrication of thin-film bulk acoustic wave resonators employing a ZnO/Si composite diaphragm structure using porous silicon layer etching, IEEE Electron Device Letters, v 20, n 3, p. 113-115, 1999
    [42] Kourosh Kalamtar Zadeh, Adrian Trinchi, Wojtek Wlodarski and Anthony Holland, A novel love-mode device based on a ZnO/ST-cut quartz crystal structure for sensing applications, Sensors and Actuators, A: Physical, v 100, n 2-3, p. 135-143, 2002
    [43] Kiyoshi Nakamura, Hidenori Hitazume and Yoshiko Kawamura, Optical TE-TM mode conversion using SH-SAW in ZnO/Y-X LiNbO3, Proceedings of the IEEE Ultrasonics Symposium, v 1, p. 637-641, 1999
    [44] J. E. Lefebvre, T. Gryba and Victor Y. Zhanq, SAW characteristics in a layered ZnO/GaAs structure for design of integrated SAW filters, Proceedings of the IEEE Ultrasonics Symposium, v 1, p. 261-264, 2001
    [45] N. W. Emsmetoqlu, G. Patounakis, S. Lianq, C. R. Gorla, R. Wittstruck and Y. Lu, Analysis of SAW properties of epitaxial ZnO films grown on R-Al2O3 substrates, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, v 48, n 5, September, p. 1389-1394, 2001

    下載圖示 校內:2008-06-18公開
    校外:2013-06-18公開
    QR CODE