| 研究生: |
戴家豪 Dai, Jia-Hao |
|---|---|
| 論文名稱: |
改善窄頻傳導雜訊用電源線路濾波器之研究 Study on Line Filter for Improving Narrowband Conducted Noise |
| 指導教授: |
李嘉猷
Lee, Jia-You |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 電源線路濾波器 、窄頻傳導雜訊 |
| 外文關鍵詞: | line filter, narrowband conducted noise |
| 相關次數: | 點閱:88 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於主動元件成本較高,因此本文首先利用被動元件所組成的基本型電源線路濾波器來抑制傳導雜訊干擾。假設在抑制後,在傳導雜訊頻譜上出現某一雜訊頻率無法通過法規要求的情形,則本文的手段是提出在基本型電源線路濾波器上外加LC串聯線路的修正型電源線路濾波器架構,其特點在於利用LC諧振,可將與串聯諧振頻率相同的傳導雜訊電流旁路接地,使基本型電源線路濾波器兼具有改善特定窄頻傳導雜訊之效用。也就是類似於帶拒濾波器的特性,僅針對某一無法通過法規要求的窄頻雜訊頻譜作改善,而並非是整個傳導雜訊頻譜作改善。藉由頻譜模擬結果,證實本文所提修正型電源線路濾波器架構能確實有效地改善窄頻傳導雜訊干擾。
Because the active component get higher cost, this article makes use of the basic circuit filter which consists of passive component to refrain from the interfering of conducted noise. Assume the noise was constrained, but a noise frequency that results from the conducted noise spectrum cannot meet regulations we have set. The means of this article propose a framework of modified model of LC series circuit which adds onto basic model line filter, the feature lies on making use of resonant for bypassing conducted noise current with LC series circuit at the same resonant frequency. And let basic model line filter possessing the effect of improving specific narrowband conducted noise. So it is like the features of notch filter, just improving against a narrowband noise spectrum which cannot meet the regulations, not against all of the noise frequency. Verify the framework of modified model which has been cited by this thesis improve effectively the interference of narrowband conducted noise indeed by the result of spectrum simulation.
[1] F. Lin and D. Y. Chen, “Reduction of power supply EMI emission by switching frequency modulation,” IEEE Trans. Power Electron., vol. 9, no. 1, pp. 132-137, 1993.
[2] J. Balcells, A. Santolaria, A. Orlandi, D. Gonzalez, and J. Gago, ‘‘EMI reduction in switched power converters using frequency Modulation techniques,’’ IEEE Trans. Electromagn. Compat., vol. 47, no. 3, pp. 569-576, 2005.
[3] K. K. Tse, H. S. Chung, S. Y. R. Hui, and H. C. So, ‘‘A comparative study of carrier-frequency modulation techniques for conducted EMI suppression in PWM converters,’’ IEEE Trans. Ind. Electron., vol. 49, no. 3, pp. 618-627, 2002.
[4] M. I. Montrose, Printed Circuit Board Design Techniques for EMC Compliance. New York: IEEE Press, 1996.
[5] T. C. Neugebauer and D. J. Perreault, ‘‘Filters with inductance cancellation using printed circuit board transformers,’’ IEEE Trans. Power Electron., vol. 19, no. 3, pp. 591-602, 2004.
[6] M. H. Pong, C. M. Lee, and X. Wu, ‘‘EMI due to electric field coupling on PCB,’’ in Proc. IEEE PESC’98, 1998, vol. 2, pp. 1125-1130.
[7] S. J. Briggs, D. J. Savignon, P. T. Krein, and M. S. Kim, ‘‘The effect of nonlinear loads on EMI/RFI filters,” IEEE Trans. Ind. Appl., vol. 31, no. 1, pp. 184-189, 1995.
[8] J. He, ‘‘An improved energy recovery soft-switching turn-on/turn-off passive boost snubber with peak voltage clamp,’’ in Proc. IEEE APEC’00, 2000, vol. 2, pp. 699-706.
[9] C. J. Tseng and C. L. Chen, ‘‘A passive lossless snubber cell for nonisolated PWM DC/DC converters,’’ IEEE Trans. Ind. Electron., vol. 45, no. 4, pp. 593-601, 1998.
[10] N. K. Poon, B. M. H. Pong, C. P. Liu, and C. K. Tse, ‘‘Essential-coupling-path models for non-contact EMI in switching power converters using lumped circuit elements,’’ IEEE Trans. Power Electron., vol. 18, no. 2, pp. 686-695, 2003.
[11] M. Shoyama, G. Li, and T. Ninomiya, ‘‘Balanced switching converter to reduce common-mode conducted noise,’’ IEEE Trans. Ind. Electron., vol. 50, no. 6, pp. 1095-1099, 2003.
[12] H. Chung, S. Hui, and K. K. Tse, ‘‘Reduction of power converter EMI emission using soft-switching technique,’’ IEEE Trans. Electromagn. Compat., vol. 40, no. 3, pp. 282-287, 1998.
[13] H. Zhu, J. S. Lai, A. R. Jr. Hefner, Y. Tang, and C. Chen, ‘‘Modeling-based examination of conducted EMI emissions from hard and soft-switching PWM inverters,’’ IEEE Trans. Ind. Appl., vol. 37, no. 5, pp. 1383-1393, 2001.
[14] K. Fujiwara and H. Nomura, ‘‘A novel lossless passive snubber for soft-switching boost-type converters,’’ IEEE Trans. Power Electron., vol. 14, no. 6, pp. 1065 -1069, 1999.
[15] W. Huang and G. Moschopoulos, ‘‘A new family of zero-voltage-transition PWM converters with dual active auxiliary circuits,’’ IEEE Trans. Power Electron., vol. 21, no. 2, pp. 370-379, 2006.
[16] F. Y. Shih, D. Y. Chen, Y. P. Wu, and Y. T. Chen, “A procedure for designing EMI filters for AC line applications,” IEEE Trans. Power Electron., vol. 11, no. 1, pp. 170-181, 1996.
[17] V. Vlatkovic, D. Borojevic, and F. C. Lee, “Input filter design for power factor correction circuits,” IEEE Trans. Power Electron., pp. 199-205, 1996.
[18] R. Chen, J. D. V. Wyk, S. Wang, and W. G. Odendaal, ‘‘Improving the Characteristics of integrated EMI filters by embedded conductive Layers,’’ IEEE Trans. Power Electron., vol. 20, no. 3, pp. 611-619, 2005.
[19] S. Wang, F. C. Lee, and W. G. Odendaal, ‘‘Characterization and parasitic extraction of EMI filters using scattering parameters,’’ IEEE Trans. Power Electron., vol. 20, no. 2, pp. 502-510, 2005.
[20] S. Wang, F. C. Lee, W. G. Odendaal, and J. D. V. Wyk, ‘‘Improvement of EMI filter performance with parasitic coupling cancellation,’’ IEEE Trans. Power Electron., vol. 20, no. 5, pp. 1221-1228, 2005.
[21] W. Chen, X. Yang, and Z. Wang, ‘‘An active EMI filtering technique for improving passive filter low-frequency performance,’’ IEEE Trans. Electromagn. Compat., vol. 48, no. 1, pp. 172-177, 2006.
[22] Y. C. Son and S. K. Sul, ‘‘Generalization of active filters for EMI reduction and harmonics compensation,’’ IEEE Trans. Ind. Appl., vol. 42, no. 2, pp. 545-551, 2006.
[23] S. Wang, R. Chen, J. D. V. Wyk, F. C. Lee, and W. G. Odendaal, ‘‘Developing parasitic cancellation technologies to improve EMI filter performance for switching mode power supplies,’’ IEEE Trans. Electromagn. Compat., vol. 47, no. 4, pp. 921-929, 2005.
[24] A. M. Al-Zamil and D. A. Torrey, ‘‘A passive series, active shunt filter for high power applications,’’ IEEE Trans. Power Electronics, vol. 16, no. 1, pp. 101-109, 2001.
[25] T. Farkas and M. F. Schlecht, “Viability of active EMI filters for utility applications,” IEEE Trans. Power Electronics, vol. 9, no. 3, pp. 328-337, 1994.
[26] M. Ghausi, ‘‘Analog active filters,’’ IEEE Trans. Circuits Syst., vol. 31, no. 1, pp. 13-31, 1984.
[27] M. Zhu, D. J. Perreault, V. Caliskan, T. C. Neugebauer, S. Guttowski, and J. G.Kassakian, ‘‘Design and evaluation of Feedforward Active ripple filters,’’ IEEE Trans. Power Electron., vol. 20, no. 2, pp. 276-285, 2005.
[28] 謝月女,主動式共模傳導雜訊濾波器應用於切換式電源供應器之研究,國立成功大學電機所碩士論文,2000。
[29] Y. Nishimura, T. Shimizu, G. Kimura, and S. Igarashi, “Series connection type common-mode current reduction circuit,” in Proc. IEEE APEC’00., 2000, vol. 1, pp. 278-283.
[30] 魏士豪,嵌入式共模雜訊抑制器之研究,國立成功大學電機所碩士論文,2002。
[31] D. Cochrane, D. Y. Chen, and D. Boroyevic, ‘‘Passive cancellation of common-mode noise in power electronic circuits,’’ IEEE Trans. Power Electron., vol. 18, no. 3, pp. 756-763, 2003.
[32] T. Shimizu and G. Kimura, “High frequency leakage current reduction based on a common mode compensation circuit,” in Proc. IEEE PESC’96, 1996, vol. 2, pp. 1961-1967.
[33] 楊繼深,電磁相容技術之產品研發與認證,全華,2005。