簡易檢索 / 詳目顯示

研究生: 陳昱辰
Chen, Yu-Chen
論文名稱: 具高熱穩定性可調式Y2MgTiO6:Sm3+: Dy3+ 白光LED製備與光學特性探討
A Novel High thermal stability Y2MgTiO6:Sm3+, Dy3+ Phosphors for Tunable WLED Applications
指導教授: 黃正亮
Huang, Cheng-Liang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 100
中文關鍵詞: Y2MgTiO6:Sm3+Y2MgTiO6:Dy3+WLED暖白光CASTEP第一原理計算良好熱穩定性
外文關鍵詞: WLED, warm WLED, Y2MgTiO6, red-phosphor, CASTEP
相關次數: 點閱:49下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用高溫固態反應法製備Y2MgTiO6+(YMTO)雙鈣鈦礦螢光材料,並選用Sm3+與Dy3+分別作為活化劑取代材料中Y3+為發光中心。探討Y2MgTiO6:Sm3+紅光螢光粉之晶體結構、光學特性與熱穩定性,並探討Y2MgTiO6:Dy3+螢光粉之晶體結構、光學特性與熱穩定性,最後共摻雜Y2MgTiO6:Dy3+/Sm3+使螢光粉末具備紅光波段製備出可調式暖白光。
    第一階段將先使用第一原理計算穩定結構之YMTO、YMTO:Sm3+與YMTO:Dy3+並計算摻雜少量活化劑後,材料架構之穩定度與活化劑離子對能階與能態密度的影響。當摻雜活化劑後,可見YMTO螢光材料之能階由3.3eV下降至摻雜Sm3+之3.0eV與Dy3+之2.3eV,並可由能帶密度觀察到能階下降主要由活化劑所貢獻。
    第二階段將研究部不同鍛燒溫度對螢光粉末YMTO:Sm3+光學特性與晶體結構之影響,當煆燒溫度低於1400°C可由XRD繞射分析圖觀測到二次相訊號,而1500°C以上之螢光材料無二相產生代表成功合成此材料,但1600oC之螢光材料SEM分析顯示融化現象,這會劣化其發光特性,並使用PL放射光譜進行放射波段的光學特性探討,可觀測到1500°C之鍛燒溫度擁有最佳的放射強度,使1500°C為YMTO螢光材料之最佳鍛燒溫度。
    第三部分則研究不同摻雜濃度下以Sm3+製備之紅光螢光粉晶體結構、光學特性與熱穩定性。首先使用XRD、GSAS、SEM進行晶體結構之探討,可見至7mol% Sm3+摻雜濃度為止皆成功合成並且無二次相產生,SEM也可觀測到球形結構有利於減少表面反射,接著以PL、PLE、CIE進行光學特性之探討,可見放射光譜於3mol%擁有最佳放射強度,緊接著發生濃度淬滅,並於602 nm擁有最好的放射強度。再以最佳強度YMTO:3Sm3+進行熱淬滅分析,可見於425K之LED工作溫度依然可以維持81.9%之初始強度並且優於其他以Sm3+作為活化劑之螢光粉。
    第四部份則是研究以Dy3+作為活化劑之螢光材料,晶體結構、光學特性、熱穩定性之探討。同樣以XRD、GSAS、SEM研究其晶體結構,可見至5mol%摻雜濃度為止皆可成功替換材料中Y3+並且無任何二次相產生,SEM也成圓球狀之晶粒。光學特性則是以PLE、PL、CIE進行分析,於放射光譜中可見575 nm為Dy3+之最佳強度波長,並於4mol%擁有最佳放射強度,接著發生濃度淬滅使強度下降,而不同摻雜濃度僅影響放射強度不影響放射光譜位置與位移。最後探討最佳濃度YMTO:4Dy3+之熱穩定性,可觀察到相較於其他Dy3+之螢光粉末,該螢光材料擁有最佳的放射強度,並且可以於425K之LED工作溫度維持92.5%之放射強度
    最後利用共摻雜Sm3+與Dy3+至YMTO主體材料中使YMTO:Dy3+/Sm3+擁有紅光區域之波段使色溫由未摻雜之4115K下降至3302K。低色溫的暖白光螢光粉解決了冷白光螢光粉高色溫造成對人眼不適的缺點,並擁有較佳的顯色性,製備出可調之YMTO:Dy3+/Sm3+暖白光螢光粉,並且於425K之LED工作溫度可維持76.8%之放射強度。

    Y2MgTiO6:Sm3+/Dy3+ double-perovskite phosphors were synthesized using the high-temperature solid-state reaction method, and their luminescence properties were examined through various techniques, including Rietveld refinement, excitation and emission spectra, Commission Internationale de l'Eclairage (CIE) analysis, and band gap simulation. The emission spectra of Y2MgTiO6 (YMTO) doped with Sm3+ and Dy3+ exhibited maximum peaks at 602nm and 575nm, respectively, when excited at 325nm. The CIE coordinates of YMTO:1Dy were determined to be (0.3771, 0.3804), and the correlated color temperature (CCT) was 4115K, indicating its suitability for warm white light applications. The CCT values were adjustable to 3719K and 3302K by adding 1 and 3 Sm3+ ions, respectively, to the Sm3+/Dy3+ co-doped YMTO, further enhancing its potential for use in warm white light-emitting diodes (WLEDs). Therefore, YMTO: Sm3+/Dy3+ phosphors show promising characteristics for use in warm WLEDs.

    中英摘要 I 致謝 IX 目錄 XI 表目錄 XV 圖目錄 XVI 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 3 1.3 主體材料介紹 5 第二章 文獻回顧 7 2.1 螢光材料介紹 7 2.2 螢光材料設計 7 2.2.1 主體材料選擇 10 2.2.2 活化劑選擇 12 2.3 螢光材料發光 14 2.3.1 激發源之類別 14 2.3.2 螢光材料發光特性分類 15 2.4 螢光材料發光機制 18 2.4.1發光原理介紹 18 2.4.2輻射發光 19 2.4.3組態座標圖 21 2.4.2能量轉移 24 2.5 影響發光特性之因素 26 2.5.1主體共價效應(Covalency Effect) 26 2.5.2晶格場效應(Crystal field Effect) 27 2.5.3濃度淬滅效應(Concentration quenching Effect) 27 2.5.4熱淬滅效應(Thermal quenching Effect) 29 2.5.5毒劑效應(Poisoning Effect) 30 2.6螢光材料的製備 31 2.6.1固態反應法 32 2.6.2溶膠凝膠法 33 2.6.3共沉澱法 33 第三章 實驗步驟與方法 34 3.1 實驗材料 34 3.2 實驗步驟 34 3.3 分析儀器與方法 38 3.3.1 第一原理計算 38 3.3.2 X光繞射分析儀(X-Ray Diffraction Analysis, XRD) 39 3.3.3 高解析掃描式電子顯微鏡(High Resolution Scanning Electron Microscope, HR-SEM) 40 3.3.4 微拉曼及微光激發光譜儀(Micro-Raman & Photoluminescence ExcitationSpectrometer) 41 3.3.5 螢光光譜儀( Fluorescence Spectrophotometer) 42 3.3.6 C.I.E. 色度座標分析 43 3.3.7 紫外光-可見光-近紅外光分光光譜儀(UV/Visible/NIR Spectrophotometer, UV-Vis) 45 第四章 實驗結果與討論 46 4.1 YMTO第一原理計算 46 4.1.1能階之計算 46 4.1.2 能態密度(Density of State, DOS)之計算 49 4.1.3 Uv-Visible能階計算 51 4.2 YMTO摻雜6 mol%Sm3+不同鍛燒溫度下之特性探討 54 4.2.1 XRD分析 54 4.2.2 SEM分析 55 4.2.3 PL分析 56 4.3 YMTO摻雜不同Sm3+離子濃度之特性探討 58 4.3.1 XRD分析 58 4.3.2 SEM分析 60 4.3.3 PLE分析 61 4.3.4 PL分析 62 4.3.5 熱淬滅(Thermal Quenching)分析 66 4.3.6 CIE色度座標分析 69 4.4 YMTO摻雜不同Dy3+離子濃度之特性探討 71 4.4.1 XRD分析 71 4.4.2 SEM分析 74 4.4.3 PLE分析 74 4.4.4 PL分析 75 4.4.6 熱淬滅(Thermal Quenching)分析 78 4.4.7 CIE色度座標分析 81 4.5 YMTO共摻Dy3+與不同濃度之Sm3+之特性探討 82 4.5.1 XRD分析 82 4.5.2 SEM分析 83 4.5.3 PLE分析 84 4.5.4 PL分析 85 4.5.6 熱淬滅(Thermal Quenching)分析 86 4.5.7熱淬滅線性擬合 88 4.5.8 CIE色度座標分析 91 第五章 結論 93 5.1 研究結果總結 93 5.2 未來展望 95 參考文獻 96

    [1] Y. Dai, S. Yang, Y. Shan, C.-G. Duan, H. Peng, F. Yang, Q. Zhao, Single-composition white light emission from Dy3+ doped Sr2CaWO6, Materials, 12 (2019) 431.
    [2] N. Thejo Kalyani, S.J. Dhoble, Organic light emitting diodes: Energy saving lighting technology—A review, Renewable and Sustainable Energy Reviews, 16 (2012) 2696-2723.
    [3] S. Ye, F. Xiao, Y. Pan, Y. Ma, Q. Zhang, Phosphors in phosphor-converted white light-emitting diodes: Recent advances in materials, techniques and properties, Materials Science and Engineering: R: Reports, 71 (2010) 1-34.
    [4] Y. Peng, Y. Mou, X. Guo, X. Xu, H. Li, M. Chen, X. Luo, Flexible fabrication of a patterned red phosphor layer on a YAG: Ce3+ phosphor-in-glass for high-power WLEDs, Optical Materials Express, 8 (2018) 605-614.
    [5] F. Hong, H. Xu, G. Pang, G. Liu, X. Dong, W. Yu, Moisture resistance, luminescence enhancement, energy transfer and tunable color of novel core-shell structure BaGeF6: Mn4+ phosphor, Chemical Engineering Journal, 390 (2020) 124579.
    [6] H. Xu, F. Hong, G. Liu, X. Dong, W. Yu, J. Wang, Green route synthesis and optimized luminescence of K2SiF6: Mn4+ red phosphor for warm WLEDs, Optical Materials, 99 (2020) 109500.
    [7] H. Xu, F. Hong, G. Pang, G. Liu, X. Dong, J. Wang, W. Yu, Co-precipitation synthesis, luminescent properties and application in warm WLEDs of Na3GaF6: Mn4+ red phosphor, Journal of Luminescence, 219 (2020) 116960.
    [8] G. Hu, X. Hu, W. Chen, Y. Cheng, Z. Liu, Y. Zhang, X. Liang, W. Xiang, Luminescence properties and thermal stability of red phosphor Mg2TiO4: Mn4+ additional Zn2+ sensitization for warm W-LEDs, Materials Research Bulletin, 95 (2017) 277-284.
    [9] Y. Jin, Y. Fu, Y. Hu, L. Chen, H. Wu, G. Ju, M. He, T. Wang, A high color purity deep red emitting phosphor SrGe4O9: Mn4+ for warm white LEDs, Powder Technology, 292 (2016) 74-79.
    [10] X. Huang, H. Guo, LiCa 3 MgV 3 O 12 :Sm 3+ : A new high-efficiency white-emitting phosphor, Ceramics International, 44 (2018) 10340-10344.
    [11] Y. Li, J. Jiang, Q. Lv, B. Shao, C. Wang, G. Zhu, Structural and spectroscopic features of high color purity red-emitting phosphors Sr19Mg2(PO4)14: Re(3+) (Re(3+)= Eu(3+), Sm(3+), Pr(3+)), Spectrochim Acta A Mol Biomol Spectrosc, 251 (2021) 119417.
    [12] H. Pamuluri, M. Rathaiah, K. Linganna, C.K. Jayasankar, V. Lavin, V. Venkatramu, Role of Dy 3+→ Sm 3+ energy transfer in the tuning of warm to cold white light emission in Dy 3+/Sm 3+ co-doped Lu 3 Ga 5 O 12 nano-garnets, New Journal of Chemistry, 42 (2018) 1260-1270.
    [13] H. Yang, S. Zhang, H. Yang, Y. Yuan, E. Li, Vibrational spectroscopic and crystal chemical analyses of double perovskite Y2MgTiO6 microwave dielectric ceramics, Journal of the American Ceramic Society, 103 (2020) 1121-1130.
    [14] Q. Liu, L. Wang, W. Huang, X. Li, M. Yu, Q. Zhang, Thermally stable double perovskite CaLaMgSbO6: Eu3+ phosphors as a tunable LED-phosphor material, Ceramics International, 44 (2018) 1662-1667.
    [15] 劉偉仁, 姚中業, 黃健豪, 鍾淑茹, 金風, LED 螢光粉技術, 台灣五南圖書出版股份有限公司, 2014.
    [16] C. Xie, P. Wang, Y. Lin, X. Wei, M. Yin, Y. Chen, Temperature-dependent luminescence of a phosphor mixture of Li2TiO3: Mn4+ and Y2O3: Dy3+ for dual-mode optical thermometry, Journal of Alloys and Compounds, 821 (2020) 153467.
    [17] V. Chandra, B. Chandra, Suitable materials for elastico mechanoluminescence-based stress sensors, Optical Materials, 34 (2011) 194-200.
    [18] 劉如熹, 劉宇桓, 白光發光二極體用之氧氮化合物螢光粉介紹, 全華科技圖書公司, 2006.
    [19] N. Yamashita, Y. Michitsuji, S. Asano, Photoluminescence spectra and vibrational structures of the SrS: Ce3+ and SrSe: Ce3+ phosphors, Journal of the Electrochemical Society, 134 (1987) 2932.
    [20] A. Scacco, P. Jacobs, Emission spectra of KBr: Sn2+, Journal of Luminescence, 26 (1982) 393-409.
    [21] K. Srinivasan, G. Balakrishnan, Kerr effect in KCl: Pb2+ and KCl: Cu+, Journal of Physics C: Solid State Physics, 13 (1980) 441.
    [22] B. Henderson, G.F. Imbusch, Optical spectroscopy of inorganic solids, Oxford University Press, 2006.
    [23] R.B. King, Encyclopedia of inorganic chemistry, Wiley Online Library, 2005.
    [24] G. Blasse, B. Grabmaier, A general introduction to luminescent materials, in: Luminescent materials, Springer, 1994, pp. 1-9.
    [25] F. Yang, M. Wilkinson, E. Austin, K. O’Donnell, Origin of the Stokes shift: A geometrical model of exciton spectra in 2D semiconductors, Physical review letters, 70 (1993) 323.
    [26] M. Ayvacikli, Ü.H. Kaynar, Y. Karabulut, J.G. Guinea, K. Bulcar, N. Can, Cathodoluminescence properties of La2MoO6: Ln3+ (Ln: Eu, Dy, and Sm) phosphors, Applied Radiation and Isotopes, 166 (2020) 109434.
    [27] R. Yu, Y. Guo, L. Wang, H.M. Noh, B.K. Moon, B.C. Choi, J.H. Jeong, Characterizations and optical properties of orange–red emitting Sm3+-doped Y6WO12 phosphors, Journal of luminescence, 155 (2014) 317-321.
    [28] Y. Wang, J. Ding, X. Zhou, Y. Wang, Promotion of efficiency and thermal stability by restraining dynamic energy migration based on the highly symmetric rigid structure in the n-UV excitation green emission garnet phosphors, Chemical Engineering Journal, 381 (2020) 122528.
    [29] Y. Zhou, J. Lin, S. Wang, Energy transfer and upconversion luminescence properties of Y2O3: Sm and Gd2O3: Sm phosphors, Journal of Solid State Chemistry, 171 (2003) 391-395.
    [30] X. Zhang, H.J. Seo, Luminescence properties of novel Sm3+, Dy3+ doped LaMoBO6 phosphors, Journal of Alloys and Compounds, 509 (2011) 2007-2010.
    [31] C. Shang, H. Jiang, X. Shang, M. Li, L. Zhao, Investigation on the luminescence improvement of nanosized La2O3/Eu3+ phosphor under charge-transfer excitation, The Journal of Physical Chemistry C, 115 (2011) 2630-2635.
    [32] D. Vij, Luminescence of solids, Springer Science & Business Media, 2012.
    [33] A. Alkauskas, Q. Yan, C.G. Van de Walle, First-principles theory of nonradiative carrier capture via multiphonon emission, Physical Review B, 90 (2014) 075202.
    [34] Z. Song, J. Liao, X. Ding, X. Liu, Q. Liu, Synthesis of YAG phosphor particles with excellent morphology by solid state reaction, Journal of crystal growth, 365 (2013) 24-28.
    [35] R.H. Bube, S. Larach, R.E. Shrader, Mechanism of Impurity Poisoning in the Luminescence of Zinc Sulfide Phosphors with Manganese Activator, Physical Review, 92 (1953) 1135.
    [36] T. Peng, L. Huajun, H. Yang, C. Yan, Synthesis of SrAl2O4: Eu, Dy phosphor nanometer powders by sol–gel processes and its optical properties, Materials Chemistry and Physics, 85 (2004) 68-72.
    [37] S. Li, P. Wang, R. Wang, Y. Liu, R. Jing, Z. Li, Z. Meng, Y. Liu, Q. Zhang, One-step co-precipitation method to construct black phosphorus nanosheets/ZnO nanohybrid for enhanced visible light photocatalytic activity, Applied Surface Science, 497 (2019) 143682.
    [38] J.-H. Ko, J. Ko, Recent research trends in the development of new light sources for the backlight unit of liquid crystal display, Asian J. Phys, 14 (2005) 231-237.
    [39] J.B. Coulter, D.P. Birnie III, Assessing Tauc plot slope quantification: ZnO thin films as a model system, physica status solidi (b), 255 (2018) 1700393.
    [40] D. Kshatri, A. Khare, Comparative study of optical and structural properties of micro-and nanocrystalline SrAl2O4: Eu2+, Dy3+ phosphors, Journal of luminescence, 155 (2014) 257-268.
    [41] V. Singh, S. Watanabe, T.G. Rao, J. Chubaci, H.-Y. Kwak, Luminescence and defect centres in MgSrAl10O17: Sm3+ phosphor, Journal of non-crystalline solids, 356 (2010) 1185-1190.
    [42] W.-N. Wang, W. Widiyastuti, T. Ogi, I.W. Lenggoro, K. Okuyama, Correlations between crystallite/particle size and photoluminescence properties of submicrometer phosphors, Chemistry of Materials, 19 (2007) 1723-1730.
    [43] L. Wang, H. Guo, Y. Wei, H.M. Noh, J.H. Jeong, White luminescence and energy transfer process in Bi3+, Sm3+ co-doped Ca3Al2O6 phosphors, Optical Materials, 42 (2015) 233-236.
    [44] J. Hou, X. Yin, F. Huang, W. Jiang, Synthesis and photoluminescence properties of NaLaMgWO6: RE3+ (RE= Eu, Sm, Tb) phosphor for white LED application, Materials Research Bulletin, 47 (2012) 1295-1300.
    [45] J.C. Del Valle, J. Catalán, Kasha's rule: a reappraisal, Physical Chemistry Chemical Physics, 21 (2019) 10061-10069.
    [46] D. Chikte, S. Omanwar, S. Moharil, Luminescence properties of red emitting phosphor NaSrBO3: Eu3+ prepared with novel combustion synthesis method, Journal of luminescence, 142 (2013) 180-183.
    [47] M. Xin, D. Tu, H. Zhu, W. Luo, Z. Liu, P. Huang, R. Li, Y. Cao, X. Chen, Single-composition white-emitting NaSrBO 3: Ce 3+, Sm 3+, Tb 3+ phosphors for NUV light-emitting diodes, Journal of Materials Chemistry C, 3 (2015) 7286-7293.
    [48] R. Cao, X. Wang, X. Ouyang, Y. Jiao, Y. Li, H. Wan, W. Li, Z. Luo, Thermally stable orange-red emitting Ba2SiO4: Sm3+ phosphor: Synthesis and luminescence properties, Journal of Luminescence, 224 (2020) 117292.
    [49] M. Xie, X. Min, Z. Huang, Y.g. Liu, X. Wu, M. Fang, Synthesis and photoluminescence properties of novel thermally robust Na3GdP2O8: Re3+ (Re= Sm, Dy) phosphors, Chemical Physics Letters, 710 (2018) 84-89.
    [50] P. Khajuria, M. Manhas, A. Bedyal, A. Vij, H. Swart, V. Kumar, Structural and luminescence characterization of thermally stable orange-red emitting LiSrP3O9: Sm3+ phosphor to fill the amber gap in WLEDs, Displays, 75 (2022) 102302.
    [51] B. Su, H. Xie, Y. Tan, Y. Zhao, Q. Yang, S. Zhang, Luminescent properties, energy transfer, and thermal stability of double perovskites La2MgTiO6: Sm3+, Eu3+, Journal of Luminescence, 204 (2018) 457-463.
    [52] Q. Liu, J. Guo, M. Fan, Q. Zhang, S. Liu, K.-L. Wong, Z. Liu, B. Wei, Fast synthesis of Dy 3+ and Tm 3+ co-doped double perovskite NaLaMgWO 6: a thermally stable single-phase white-emitting phosphor for WLEDs, Journal of Materials Chemistry C, 8 (2020) 2117-2122.
    [53] B. Yang, J. Xu, Y. Zhang, Y. Chu, M. Wang, Y. Wen, A yellow emitting phosphor Dy:Bi4Si3O12 crystal for LED application, Materials Letters, 135 (2014) 176-179.
    [54] M. Jayachandiran, S.M.M. Kennedy, Synthesis and optical properties of Ba3Bi2 (PO4)4: Dy3+ phosphors for white light emitting diodes, Journal of Alloys and Compounds, 775 (2019) 353-359.
    [55] Z. Wang, X. Luan, B. Wang, Y. Liu, Luminescent characteristics of a single-phase warm white-light-emitting phosphor Ba3Lu4O9: Dy3+ with excellent thermal stability, Chemical Physics Letters, 762 (2021) 138154.
    [56] D. Zhu, M. Liao, Z. Mu, F. Wu, Preparation and Luminescence Properties of Ca 9 NaZn (PO4)7: Dy3+ Single-Phase White Light-Emitting Phosphor, Journal of Electronic Materials, 47 (2018) 4840-4844.

    無法下載圖示 校內:2028-07-25公開
    校外:2028-07-25公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE