| 研究生: |
吳勝皓 Wu, Sheng-Hao |
|---|---|
| 論文名稱: |
研究以各種酚醛樹脂與合成方法製作多元性之中孔洞碳材 Synthesis of Mesoporous Carbon in Different forms by Using Various Phenol-Formaldehyde Sources and Different Synthestic methods |
| 指導教授: |
林弘萍
Lin, Hong-Ping |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 109 |
| 中文關鍵詞: | 酚醛樹脂 、矽酸鈉 、界面活性劑 、碳材 、中孔洞材料 |
| 外文關鍵詞: | mesoporous, carbon, surfactant, phenol formaldehyde resin, silica |
| 相關次數: | 點閱:100 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
利用界面活性劑模板法所合成的中孔洞材料,由於具有可改變孔
道形狀、高表面積和大孔洞體積等特性,在近十年來已受到很大的關
注。本研究主要是利用中性界面活性劑Pluronic F127和各種不同
分子量的phenol-formaldehyde(PF)共混掺當有機模板合成出介尺
度堆積規則的中孔洞碳材或矽材。藉由簡易的sol-gel方法,將F127
和PF溶於H2O/EtOH溶液中,再倒入酸性sodium silicate 水溶液,即
可合成出PF-F127-silica複合中孔洞材料。此PF-F127-silica複合
中孔洞材料經由100℃烘箱硬化和高溫爐在氮氣環境中高溫1000℃,
持溫兩小時進行碳化,利用4.8% HF移除氧化矽模板,即可得到中孔洞
碳材。
此外,可藉由改變合成因素,如: H2O/EtOH 重量比例、pH值、溫
度和不同分子量PF resins 等條件,並探討不同合成因素對中孔洞碳
材外觀和孔洞性的影響。當H2O/EtOH重量比例為0 時,可合成出顆粒
狀中孔洞碳材,提高重量比例時其外觀將由泡囊狀逐漸變成短條狀,
所合成出的中孔洞碳材具有高表面積1000–1500 m2g-1和大孔洞體積0.75–2.0 cm3g-1。
在此亦提出另一種新式方法以合成中孔洞碳材,利用高鹼性水溶
液可溶解PF resins的特性取代EtOH,快速溶解PF resins於溶液中,將溶液pH值調到pH=4.0~6.0,即可合成PF-F127-silica複合中孔洞
材料,再經由碳化與移除氧化矽則可得到中孔洞碳材,並藉由改變不
同分子量PF resins 與界面活性劑以合成出具高面積1000–2000
m2g-1、大孔洞體積和不同外觀的中孔洞碳材,此方法不僅可減少乙醇使用量還可以更快速地得到中孔洞碳材。
最後我們也嘗試以氧化鋅做為隔層物,利用溶液揮發自組合方法,可快速簡便得合成出具有高孔洞性的中孔洞碳材,並比較在不同條件下所合成碳材的差異,此方法的好處是在常溫下即可合成且氧化鋅移除較氧化矽容易。
In this thesis, miscible polymer blends of homo- or triblock-polymer surfactants and phenol formaldehyde resin (PF) were used as novel templates to synthesize the mesoporous silicas and carbons. The F127-PF-silica nano-composite in well-ordered hexagonal mesostructure was efficiently synthesized by mixing an ethanol/water solution of F127-PF polymer blend and a acidified sodium silicate aqueous solution. This nano-composite can be converted into mesoporous carbons via consequent processes of drying at 100oC, pyrolysis under N2 atmosphere at 1000 oC and HF-etching. Alternatively, the mesoporous silica can be obtained form calcination in air.
To explore the effects of various reaction factors on the morphology and mesostructures of the mesoporous carbons and silicas, we changed pH value of the silicate solution, H2O/EtOH ratio, and temperature, and used PF resins with different molecular weights. At EtOH/H2O ratio = 0, a well-order mesoporous carbon in a particle morphology was synthesized. As increasing the H2O/EtOH ratio, the morphology was transformed from vesicle-like particles to short nanorods. The resulted mesoporous carbons possess high surface area of 1000–1500 m2g-1 and
large porosity of 0.75–2.0 cm3g-1.
In addition, we also proposed another method to synthesize the mesoporous carbons from different PF resin and polymer surfactants by dissolving the organic compositions in a highly alkaline sodium silicate solution (pH > 11). After acidifying that gel solution to pH value around 6.0, the PF-F127-silica composite can be rapidly synthesized. Typically, this composite can also be converted into mesoporous carbons or silica as will. This method can avoid using the organic ethanolic solvent. To
extending the method, we performed PF resins in different molecular weights and various surfactants to synthesize different mesoporous carbons with high surface area (1000-2000 m2g-1), large porosity, and novel-morphology.
To avoid using the hazardous HF for silica removal, we tried to use ZnO nanoparticles as solid spacer, which could be removed by other inorganic acids, to prepare the mesoporous carbons. After solvent evaporation, a PF-P127-ZnO homogeneous composite was obtained. With a well-control on the synthetic compositions, the mesoporous
carbon of high surface are and large pore size has been conveniently synthesized after pyrolysis at 1000 oC and HCl-etching.
1. C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck,
Nature, 1992,359, 710.
2. J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge,
K. D. Schmitt, C. T-W. Chu, D. H. Olson, E. W. Sheppard, S. B.
Higgins, J. L. Schlenker, J. Am. Chem. Soc., 1992, 114, 10834.
3. C.-G. Wu, T. Bein, Science, 1994, 264, 1757.
4. C.-G. Wu, T. Bein, Science, 1994, 266, 1013.
5. C.-G. Wu, T. Bein, Chem. Mater., 1994, 6, 1109.
6. (a) Y. S. Lee, D. Surjadi, J. F. Rathman, Langmuir, 1996,12, 6202.
(b) C. H. Ko, R. Raoo, J. Chem. Soc., Chem. Comunn., 1996, 2467 .
7. S. C. Tsang, J. J. Davis, M. L. H. Green., H. A. O. Hill, Y. C. Leung,
P. J. Sadler, J. Chem. Soc., Chem. Commun., 1995, 1803.
8. T. Abe, Y. Tachibana, T. Uemtsu, M. Iwamoto, J. Chem. Soc., Chem.
Commun., 1995, 1617.
9. A. Sayari, Chem. Mater., 1996, 8, 1840.
10. R. Neumann, K. Khenkin, Chem. Commun., 1996, 23, 2643.
11. B. Charkraborty, A. C. Pulikottil, B. Viswanathan, Catal. Lett., 1994,
39, 63.
12. M. Hartmann, A. Popll, L. Kenvan, J. Phys. Chem., 1996,100, 9906.
13. A. Corma, M. T. Navarro, J. Perez-Pariente, F. Sanchez, Stud. Surf.
Sci. Catal., 1994, 84, 69.
14. J. S. Reddy, A. Sayari, J. Chem. Soc., Chem. Commun., 1995, 2231.
15. IUPAC Mannal of Symbols and terminology, Appendix 2, Pt. 1,
Colloid and Surface Chemistry, Pure Appl. Chem. 1972, 31, 578.
16. J. Fan, C. Yu, F. Gao, J. Lei, B. Yian L. Wang, Q. Luo, B. Tu, Zhou
and D. Zhao. Angew. Chem., 2003, 115 , 3254.
17. A. E. Garcia – Bennett, S. Williamsin, P. A. Wright and I. J. Shannon.
J. Meter. Chem, 2002, 12, 3533.
18. A. Vinu, V. Murugesan and M. Hartmann. Chem. Meter., 2003, 15,
1385.
19. H. P. Lin, C. Y Tang and C. Y. Lin. J. Chin. Chem. Soc., 2002, 49,
981.20. V. Alfredsson and M. W. Anderson. Chem. Mater., 1996, 8, 1141.
21. H. P. Lin and C. Y. Mou Acc. Chem. Rev., 2002, 35, 927.
22. Q. Huo, D. I. Margolese and G. D. Stucky. Chem. Mater., 1996, 8,
1147.
23. S. H. Tolbert, C. C. Landry, G. D. Stucky, B. F. Chmelka, P. Norby,
J. C. Hanson and A. Monnier. Chem. Mater., 2001, 13, 2247.
24. J. M. Kim, Y. Sakamoto, Y. K. Hwang, Y. - Uk Kwon, O. Terasaki,
S. – Eon. Park and G. D. Stucky. J. Phys. Chem. B., 2002, 106, 2552.
25. Z. Zhang, Y. Han, Feng – Shou Xiao, S. Qiu, L. Zhu, R. Wang, Y.
Yu, Ze Zhang, B. Zou, Y. Wang, H. Sun, D. Zhao and Y. Wei. J. Am.
Chem. Soc., 2001, 123, 5014.
26. A. Bhaumik and S. Inagaki. J. Am. Chem. Soc., 2001, 123, 691.
27. Y. Han, S. Wu, Y. Sun, D. Li and Feng – Shou Xiao. Chem. Mater. ,
2002, 14, 1144.
28. Z. Zhang, Y. Han, L. Zhu, R. Wang, Y. Yu, S. Oiu, D. Zhao and
Feng –Shou Xiao. Angew. Chem. Int. Ed. 7, 2001, 1258.
29. Y. Han, Feng – Shou Xiao, S. Wu, Y. Sun, X. Meng, D. Li amd S.
Lin.J. Phys. Chem. B., 2001, 105, 7963
30. D. Margolese, J. A, Melero, C. Christiansen, B. F. Chemelka and G.
D.Stukey. Chem. Mater., 2002, 12, 2448.
31. A. Walcarius, M. Etienne and B. Lebeau. Chem. Mater., 2003, 15,
2161.
32. T. Yokoi, H. Yoshitake and T. Tatsumi. J. Mater. Chem., 2004, 14 ,
951.
33. J. M. Cha, G. D. Stucky, D. E. Morse and T. J. Deming. Nature. ,
2000, 48, 289.
34. E. B. Erlein. Angew. Chem. Int. Ed., 2003, 42, 614.
35. Z. R. Tian, J. Liu, J. A. Voigt, B. Mckenzie and H. Xu. Angew. Chem.
Int. Ed. 2003, 42, 413.
36. F. Noll, M. Sumper and N. Hampp. Nano. Lett., 2002, 2, 91.
37. S. Mann, Angew. Chem. Int. Ed., 2000, 39, 3392.
38. N. Kröger, R. Deutzmann, M. Sumper, Science, 1999, 286, 1129.
39. E. G. Vrieling, T. P. M. Beelen, R. A. van Santon, W. W. C. Gieskes,
Angew. Chem. Int. Ed., 2002, 41, 1543 .
40. T. F. Todros, Surfactants, Academic Press : London, 1984.
41. B. Lindman and H. Wennerström, Micelles : Amphiphile Aggregation
in Aqueous Solution, Springer-Verlag, Heidelberg, 1980.42. J. N. Israelachvili, S. Marcelja, R. G. Horn, Q. Rev. Biophys, 1980,
13, 121.
43. D. J. Mithchell, B. W. Ninham, J. Chem. Soc., Faraday, Trans. II.,
1981, 77, 1264
44. R. K. Iler, The Chemistry of Silica , John Wiley, New York, 1979.
45. O. Huo, D. I. Margolese, U. Ciesla, D. G. Demuth, P. Feng, T. E.
Gier,P. Sieger, A. Firouzi, B. F. Chmelka, F. Schuth, and G. D.
Stukey .Chem. Mater., 1994, 6, 1176.
46. C. J. Brinker, G. W. Scherer, Journal of Non – Crystalline Solids,
1985, 70, 301
47. C. R. Bansal, J.-B. Donnet, F. Stoeckli, Active Carbon, Marcel
Dekker, New York 1988.
48. H. C. Foley, J. Microporous Mater. 1995, 4, 407.
49. T. Kyotani, Carbon 2000, 38, 269.
50. J. Lee, S. Yoon, T. Hyeon, S. M. Oh and K. B. Kim, Chem. Commun.
1998, 2177.
51. M. Kuno, T. Naka, E. Negihsi, H. Matsui, O. Terasaki, R. Ryoo, N.
Toyota, Synthetic Metals, 2003, 721.
52. H. Zhou, S. Zhu, M. Hibino, I. Honma and M. Ichihara, Adv. Mater.,
2003, 15, 2107
53. T. Kyotani, Carbon 2000, 38, 269.
54. H. Tamai, T. Kakii, Y. Hirota, T. Kumamoto, H. Yasuda, Chem.
Mater.,1996, 8, 454.
55. W. Lu, D. D. L. Chung, Carbon 1997, 35, 427.
56. Z. Hu, M. P. Srinivasan, Y. Ni, Adv. Mater. 2000, 12, 62.
57. S. Han, K. Sohn, T. Hyeon, Chem. Mater. 2000, 12, 3337.
58. C. Lin, J. A. Ritter, B. N. Popov, J. Electrochem. Soc. 1999, 146,
3639.
59. D. Kawashima, T. Aihara, Y. Kobayashi, T. Kyotani, A. Tomita,
Chem. Mater., 2000, 12, 3397.
60. Zakhidov, A. A.; Baughman, R. H.; Iqbal, Z.; Cui, C.; Khayrullin, I.;
Dantas, S. O.; Marti, J.; Ralchenko, V. G. Science 1998, 282, 897.
61. T. Kyotani, T. Nagai, S. Inoue and A. Tomita, Chem. Mater. 1997, 9,
609.
62. Knox, J. H.; Kaur, B.; Millward, G. R. J. Chromatogr. 1986, 352, 3.
63. J. H. Knox, B. Kaur, G. R. Millward, J. Chromatogr. 1986, 352, 3.
64. Y. Sakamoto, M. Kaneda, O. Terasaki, D. Y. Zhao, J. M. Kim, G.
Stucky, H. J. Shin and Ryong Ryoo, Nature, 2000, 408, 449.65. [70] Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredirckson, G. H.;
Chemlka, B. F.; Stucky, G. D. Science 1998, 279, 548.
66. M. Kruk, M. Jaroniec, S. H. Joo and R. Ryoo, J. Phys. Chem. B, 2003,
107, 2205.
67. S. H. Joo, R. Ryoo, M. Kruk and M. Jaroniec, J. Phys. Chem. B, 2002,
106, 4640.
68. R. Ryoo, S. H. Joo, M. Kruk, and M. Jaroniec, Adv. Mater. 2001, 13,
No. 9, 677.
69. S. Jun, S. H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, Z. Liu, T. Ohsuna
and O. Terasaki, J. Am. Chem. Soc., 2000, 122, 10712.
70. M. Kruk, M. Jaroniec, T.-W. Kim, and R. Ryoo, Chem. Mater. 2003,
15, 2815
71. Harriott, P.; Chang, A. T. Y. (1988) Kinetics of spent activated
carbon regeneration. AICHE Journal,Vol.34, pp.1656~662.
72. S. Brunauer, L. S. Deming, W. S. Deming and E. T. Teller, “On a
theory of the van der waals adsorption of gases”, J. Am. Chem. Soc.,
62, 1723(1940)
73. G. Ertl, H. Knozinger and J. Weitkamp, “Handbook of
Heterogeneous Catalysis”, vol 3,VCHD-69451 Weinheim, p.1508
(1997).
74. J. Pang, X. Li, D. Wang, Z. Wu, V. T. John, Z. Yang, and Y. Lu, Adv.
Mater. 2004, 16, No. 11, 884.
75. V. V. Khutoryanskiy, A. V. Dubolazov, Z. S. Nurkeeva, and G. A.
Mun, Langmuir 2004, 20, 3785.
76. S. Kuo, C. Lin, and F. Chang, Macromolecules 2002, 35, 278.
77. Hong-Ping Lin, Chun-Yi Chang-Chien, Chih-Yuan Tang, Ching-Yen
Lin, 2006 “Synthesis of p6mm hexagonal mesoporous carbons and
silicas using Pluronic F127-PF resin polymer blends”
MICROPOROUS AND MESOPOROUS MATERIALS, 93, 344-348.
78. Chun-Han Hsu, Hong-Ping Lin, Chin-Yuan Tang and Ching-Yen Lin,
2006 “Synthesis of mesoporous silicas with different pore sizes using
PEO polymers via hydrothermal treatment: A direct template for
mesoporous carbon” Materials Chemistry and Physics, 100, 112-116.