| 研究生: |
王立夫 Wang, Li-Fu |
|---|---|
| 論文名稱: |
在推輪椅時的肘關節肌肉力學分析 Elbow Muscle Force Analysis during Wheelchair Propulsion |
| 指導教授: |
蘇芳慶
Su, Fong-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 醫學工程研究所 Institute of Biomedical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 英文 |
| 論文頁數: | 59 |
| 中文關鍵詞: | 肘關節 、輪椅驅動 、肌肉力學模型 、肌肉力量 、動作分析 |
| 外文關鍵詞: | Elbow, Wheelchair propulsion, Muscle mechanics model, Muscle force, Motion analysis |
| 相關次數: | 點閱:73 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
手推輪椅是下身麻痺患者日常生活中常使用的一種工具。輪椅使用者在獨自行動時高度依賴他們的上肢,導致上肢常常會有疼痛或損傷的現象發生。在過去的文獻中,大多數學者研究推輪椅時上肢各關節之接觸力和力矩,並集中注意在肩關節肌肉力量的分析。然而,肘關節肌肉力量則鮮為人知。因此本研究之目的為發展一套肘關節肌肉力學模型做為推輪椅時的肌肉力學分析。
本研究參與受試者為十一位無病痛之正常人。一台裝有訂製量測工具輪的市售輪椅以及擁有八台攝影機的動作擷取系統,用來收集運動學及動力學量測資料。本肘關節肌肉力學模型包含九條肌肉,結合逆向動力學演算法和牛頓法計算平衡方程式,並用最佳化求解,目標函數為使肌肉應力平方合最小。此外,兩種不同限制用於此研究,分別為:(1) 設定X、Y、Z三方向關節作用力矩為零 (2) 只設定Y軸向(屈曲/伸展)之肘關節作用力矩為零。
結果顯示在輪椅推進期中,肱肌、肱三頭肌外側頭和肱三頭肌內側頭有較大於其他肘關節肌肉之力量。在輪椅回復期中,肱肌有較大的力量。此外,肌肉力量的最大值在不同限制中有統計上的顯著差異。總結而言,本研究之模型可用於分析、並調整任意肌肉之參數以及限制來探討各肌肉之交互影響,做為臨床上的應用。
Handrim wheelchair is one of the most common instruments used by paraplegic patients for their daily mobility. The users of manual wheelchair rely heavily on their upper limbs for independent mobility so that upper extremity pain and impairment have often occurred. In the literature, most researchers have investigated joint contact forces and moments and focused on shoulder muscle forces during wheelchair propulsion. However, the forces of elbow muscle have not been known. The purpose of this study was to develop a muscle mechanics model of elbow joint for analyzing muscle forces during wheelchair propulsion.
Eleven normal subjects participated in this study. A Quikie GP ultralight wheelchair with custom instrumental wheels and an 8-camera motion capture system were used to collect the kinetic and kinematic measurements. An elbow muscle model including nine muscle lines was combined the inverse dynamic solution and Newtonian formulation to calculate the equilibrium equation. Muscle forces were solved by the optimization method and the objective function was to minimize the sum of squared muscle stress. Otherwise, two different equilibrium conditions were used in this study: (1) setting entire joint constraint moment to zero; (2) only setting joint constraint moment of y-axis (flexion/extension) to zero.
Results of this study showed that in propulsion phase, brachialis, triceps lateral head, and triceps medial head have larger predicted muscle forces than the other elbow muscles. In recovery phase, brachialis has larger predicted muscle force. Besides, the magnitudes of peak muscle force have statistically significant differences between two conditions. To conclude, the present model can be used to analyze and adjusted the parameter of each muscle or constraint to investigate the interactive of every muscle for clinical applications.
An, K. N., Hui, F. C., Morrey, B. F., Linscheid, R. L. and Chao, E. Y. (1981). "Muscles across the elbow joint: a biomechanical analysis." J Biomech 14(10): 659-69.
An, K. N., Kaufman, K. R. and Chao, E. Y. (1989). "Physiological considerations of muscle force through the elbow joint." J Biomech 22(11-12): 1249-56.
Asato, K. T., Cooper, R. A., Robertson, R. N. and Ster, J. F. (1993). "SMARTWheels: development and testing of a system for measuring manual wheelchair propulsion dynamics." IEEE Trans Biomed Eng 40(12): 1320-4.
Audenaert, A. and Audenaert, E. (2008). "Global optimization method for combined spherical-cylindrical wrapping in musculoskeletal upper limb modelling." Comput Methods Programs Biomed 92(1): 8-19.
Challis, J. H. (1995). "A procedure for determining rigid body transformation parameters." J Biomech 28(6): 733-7.
Chao, E. Y. (2003). "Graphic-based musculoskeletal model for biomechanical analyses and animation." Med Eng Phys 25(3): 201-12.
Charlton, I. W. and Johnson, G. R. (2001). "Application of spherical and cylindrical wrapping algorithms in a musculoskeletal model of the upper limb." Journal of Biomechanics.
Cooper, R. A., Robertson, R. N., VanSickle, D. P., Boninger, M. L. and Shimada, S. D. (1997). "Methods for determining three-dimensional wheelchair pushrim forces and moments: a technical note." J Rehabil Res Dev 34(2): 162-70.
Dalyan, M., Cardenas, D. D. and Gerard, B. (1999). "Upper extremity pain after spinal cord injury." Spinal Cord 37(3): 191-5.
Damsgaard, M., Rasmussen, J., Christensen, S. T., Surma, E. and Zee, M. d. (2006). "Analysis of musculoskeletal systems in the AnyBody Modeling System." Simulation Modeling Practice and Theory 14(8): 1100-11.
Delp, S. L. and Loan, J. P. (1995). "A graphics-based software system to develop and analyze models of musculoskeletal structures." Comput Biol Med 25(1): 21-34.
Desroches, G., Aissaoui, R. and Bourbonnais, D. (2008). "The effect of resultant force at the pushrim on shoulder kinetics during manual wheelchair propulsion: a simulation study." IEEE Trans Biomed Eng 55(4): 1423-31.
Dubowsky, S. R., Rasmussen, J., Sisto, S. A. and Langrana, N. A. (2008). "Validation of a musculoskeletal model of wheelchair propulsion and its application to minimizing shoulder joint forces." J Biomech 41(14): 2981-8.
Dubowsky, S. R., Sisto, S. A. and Langrana, N. A. (2009). "Comparison of kinematics, kinetics, and EMG throughout wheelchair propulsion in able-bodied and persons with paraplegia: an integrative approach." J Biomech Eng 131(2): 021015.
Fisk, J. P. and Wayne, J. S. (2009). "Development and validation of a computational musculoskeletal model of the elbow and forearm." Ann Biomed Eng 37(4): 803-12.
Fung, M., Kato, S., Barrance, P. J., Elias, J. J., McFarland, E. G., Nobuhara, K. and Chao, E. Y. (2001). "Scapular and clavicular kinematics during humeral elevation: a study with cadavers." J Shoulder Elbow Surg 10(3): 278-85.
Garner, B. A. and Pandy, M. G. (2000). "musculoskeletal model of the upper limb based on the visible human male dataset." computer methods in biomechanics and biomedical engineering.
Garner, B. A. and Pandy, M. G. (2000). "the obstacle-set method for representing muscle paths in musculoskeletal models." computer methods in biomechanics and biomedical engineering.
Gellman, H., Sie, I. and Waters, R. L. (1988). "Late complications of the weight-bearing upper extremity in the paraplegic patient." Clin Orthop Relat Res(233): 132-5.
Gonzalez, R. V., Hutchins, E. L., Barr, R. E. and Abraham, L. D. (1996). "Development and evaluation of a musculoskeletal model of the elbow joint complex." J Biomech Eng 118(1): 32-40.
Guo, L. Y., Su, F. C. and An, K. N. (2006). "Effect of handrim diameter on manual wheelchair propulsion: mechanical energy and power flow analysis." Clin Biomech (Bristol, Avon) 21(2): 107-15.
Guo, L. Y., Su, F. C., Wu, H. W. and An, K. N. (2003). "Mechanical energy and power flow of the upper extremity in manual wheelchair propulsion." Clin Biomech (Bristol, Avon) 18(2): 106-14.
Koontz, A. M., Cooper, R. A., Boninger, M. L., Souza, A. L. and Fay, B. T. (2002). "Shoulder kinematics and kinetics during two speeds of wheelchair propulsion." J Rehabil Res Dev 39(6): 635-49.
Kotajarvi, B. R., Sabick, M. B., An, K. N., Zhao, K. D., Kaufman, K. R. and Basford, J. R. (2004). "The effect of seat position on wheelchair propulsion biomechanics." J Rehabil Res Dev 41(3B): 403-14.
Li, G., Kaufman, K. R., Chao, E. Y. and Rubash, H. E. (1999). "Prediction of antagonistic muscle forces using inverse dynamic optimization during flexion/extension of the knee." J Biomech Eng 121(3): 316-22.
Lin, H. T., Su, F. C., Wu, H. W. and An, K. N. (2004). "Muscle forces analysis in the shoulder mechanism during wheelchair propulsion." Proc Inst Mech Eng [H] 218(4): 213-21.
Marieb, E. N. and Mallatt, J. (2001). Human Anatomy, Daryl Fox.
Maurel, W., Thalmann, D., Hoffmeyer, P. and al., e. (1996). "a biomechanical musculoskeletal model of human upper limb for dynamic simulation."
Mulroy, S. J., Farrokhi, S., Newsam, C. J. and Perry, J. (2004). "Effects of spinal cord injury level on the activity of shoulder muscles during wheelchair propulsion: an electromyographic study." Arch Phys Med Rehabil 85(6): 925-34.
Murray, W. M., Buchanan, T. S. and Delp, S. L. (2000). "The isometric functional capacity of muscles that cross the elbow." J Biomech 33(8): 943-52.
Murray, W. M., Buchanan, T. S. and Delp, S. L. (2002). "Scaling of peak moment arms of elbow muscles with upper extremity bone dimensions." J Biomech 35(1): 19-26.
Murray, W. M., Delp, S. L. and Buchanan, T. S. (1995). "Variation of muscle moment arms with elbow and forearm position." J Biomech 28(5): 513-25.
Pierce, J. E. and Li, G. (2005). "Muscle forces predicted using optimization methods are coordinate system dependent." J Biomech 38(4): 695-702.
Poppen, N. K. and Walker, P. S. (1976). "Normal and abnormal motion of the shoulder." J Bone Joint Surg Am 58(2): 195-201.
Price, R., Ashwell, Z. R., Chang, M. W., Boninger, M. L., Koontz, A. M. and Sisto, S. A. (2007). "Upper-limb joint power and its distribution in spinal cord injured wheelchair users: steady-state self-selected speed versus maximal acceleration trials." Arch Phys Med Rehabil 88(4): 456-63.
Ramsay, J. W., Hunter, B. V. and Gonzalez, R. V. (2009). "Muscle moment arm and normalized moment contributions as reference data for musculoskeletal elbow and wrist joint models." J Biomech 42(4): 463-73.
Robertson, R. N., Boninger, M. L., Cooper, R. A. and Shimada, S. D. (1996). "Pushrim forces and joint kinetics during wheelchair propulsion." Arch Phys Med Rehabil 77(9): 856-64.
Rodgers, M. M., McQuade, K. J., Rasch, E. K., Keyser, R. E. and Finley, M. A. (2003). "Upper-limb fatigue-related joint power shifts in experienced wheelchair users and nonwheelchair users." J Rehabil Res Dev 40(1): 27-37.
Shiba, R., Sorbie, C., Siu, D. W., Bryant, J. T., Cooke, T. D. and Wevers, H. W. (1988). "Geometry of the humeroulnar joint." J Orthop Res 6(6): 897-906.
Tomlinson, J. D. (2000). "Managing maneuverability and rear stability of adjustable manual wheelchairs: an update." Phys Ther 80(9): 904-11.
Veeger, H. E., Rozendaal, L. A. and van der Helm, F. C. (2002). "Load on the shoulder in low intensity wheelchair propulsion." Clin Biomech (Bristol, Avon) 17(3): 211-8.
Veeger, H. E., Van der Helm, F. C., Van der Woude, L. H., Pronk, G. M. and Rozendal, R. H. (1991). "Inertia and muscle contraction parameters for musculoskeletal modelling of the shoulder mechanism." J Biomech 24(7): 615-29.
Winter, D. A. (2004). Biomechanics and motor control of human movement, John Wiley & Sons, Inc., Hoboken, New Jersey.
Wu, H. W., Berglund, L. J., Su, F. C., Yu, B., Westreich, A., Kim, K. J. and An, K. N. (1998). "An instrumented wheel for kinetic analysis of wheelchair propulsion." J Biomech Eng 120(4): 533-5.
Wu, H. W., Su, F. C., Chang, Y. W. and An, K. N. (1999). A method to determine the joint loading on upper extremity in manual wheelchair propulsion. Biomedical Aspects of Manual Wheelchair Propulsion. Woude, L. H. V. v. d., Hopman, M. T. E. and Kemenade, C. H. v. Amsterdam, IOS.
Yang, Y. S., Koontz, A. M., Triolo, R. J., Mercer, J. L. and Boninger, M. L. (2006). "Surface electromyography activity of trunk muscles during wheelchair propulsion." Clin Biomech (Bristol, Avon) 21(10): 1032-41.