| 研究生: |
魏廷頴 Wei, Ting-Ying |
|---|---|
| 論文名稱: |
開發用於增強記憶的可攜式神經回饋系統 Development of a Mobile Neurofeedback Training System for Memory Enhancement |
| 指導教授: |
楊中平
Young, Chung-Ping |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 資訊工程學系 Department of Computer Science and Information Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 48 |
| 中文關鍵詞: | Alpha 、神經回饋訓練 、眼動電波圖(EOG) 、記憶 、藍芽 |
| 外文關鍵詞: | Neurofeedback, electrooculogram (EOG), memory, Bluetooth |
| 相關次數: | 點閱:74 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
神經反饋訓練(NFT)在改善病理症狀和認知功能方面的作用一直被廣泛地討論。然而,腦電圖(EEG) NFT在傳統訓練硬體和軟體上的侷限,限制了家庭訓練的應用。
我們的研究提出了一個無線眼罩和軟體系統進行alpha NFT。實驗1評估了無線眼罩和腦電圖NFT系統記錄alpha功率的一致性。結果顯示,當腦電圖(Cz)和EOG alpha閾值分別爲基線值的1.5倍和1.34倍時,alpha具有最佳的準確率和召回率。實驗2驗證了所提出的無線眼罩系統在alpha NFT中的有效性,同時對NFT前後的工作記憶和情景記憶測驗進行評估,實驗結果顯示該系統有效地提高了平均相對alpha功率和持續時間,同時也提升了兩種記憶測驗的表現。本研究所提出的可擕式無線眼罩NFT系統不僅適用於家庭訓練,而且也可有效提升Alpha以及工作和情境記憶的表現。
The benefit of neurofeedback training (NFT) in pathological symptoms amelioration and cognitive function are extensively discussed. However, the limitation of Electroencephalography (EEG) NFT on the traditional training hardware and software systems constrain the applications of home-based training.
Our study proposed a wireless eye mask and software system to conduct alpha NFT. The consistency of the increased alpha power recorded by both the wireless eye mask and the EEG NFT system were evaluated in Experiment 1. The results showed the alpha event had the optimal precision and recall ratio when EEG (Cz) and EOG alpha threshold set at 1.5 times and 1.34 times the baseline values, respectively. Experiment 2 verified the validity of the proposed wireless eye mask system in alpha NFT, while working memory and episodic memory tasks were assessed before and after the NFT to investigate the progress on memory performance.
It demonstrated that this system effectively enhanced the mean relative alpha power and duration, accompanied by the improvement in both memory tasks.
The proposed mobile wireless eye mask NFT system is applicable in home based training and also successfully develop alpha power and memory performance.
[1] L. E. Stoeckel, K. A. Garrison, S. Ghosh, P. Wighton, C. A. Hanlon, J. M. Gilman, S. Greer, N. B. Turk-Browne, M. T. deBettencourt, D. Scheinost, C. Craddock, T. Thompson, V. Calderon, C. C. Bauer, M. George, H. C. Breiter, S. Whitfield-Gabrieli, J. D. Gabrieli, S. M. LaConte, L. Hirshberg, J. A. Brewer, M. Hampson, A. Van Der Kouwe, S. Mackey, and A. E. Evins, “Optimizing real time fMRI neurofeedback for therapeutic discovery and development,” Neuroimage Clin, vol. 5, pp. 245-55, 2014.
[2] K. Emmert, R. Kopel, J. Sulzer, A. B. Bruhl, B. D. Berman, D. E. J. Linden, S. G. Horovitz, M. Breimhorst, A. Caria, S. Frank, S. Johnston, Z. Long, C. Paret, F. Robineau, R. Veit, A. Bartsch, C. F. Beckmann, D. Van De Ville, and S. Haller, “Meta-analysis of real-time fMRI neurofeedback studies using individual participant data: How is brain regulation mediated?,” Neuroimage, vol. 124, no. Pt A, pp. 806-812, Jan 1, 2016.
[3] H. Marzbani, H. R. Marateb, and M. Mansourian, “Neurofeedback: A Comprehensive Review on System Design, Methodology and Clinical Applications,” Basic Clin Neurosci, vol. 7, no. 2, pp. 143-58, Apr, 2016.
[4] R. S. Monderer, D. M. Harrison, and S. R. Haut, “Neurofeedback and epilepsy,” Epilepsy Behav, vol. 3, no. 3, pp. 214-218, Jun, 2002.
[5] M. B. Sterman, and T. Egner, “Foundation and practice of neurofeedback for the treatment of epilepsy,” Appl Psychophysiol Biofeedback, vol. 31, no. 1, pp. 21-35, Mar, 2006.
[6] A. Lazarov, R. Dar, Y. Oded, and N. Liberman, “Are obsessive-compulsive tendencies related to reliance on external proxies for internal states? Evidence from biofeedback-aided relaxation studies,” Behav Res Ther, vol. 48, no. 6, pp. 516-23, Jun, 2010.
[7] M. H. Breteler, M. Arns, S. Peters, I. Giepmans, and L. Verhoeven, “Improvements in spelling after QEEG-based neurofeedback in dyslexia: a randomized controlled treatment study,” Appl Psychophysiol Biofeedback, vol. 35, no. 1, pp. 5-11, Mar, 2010.
[8] E. Baehr, J. P. Rosenfeld, and R. Baehr, “Clinical Use of an Alpha Asymmetry Neurofeedback Protocol in the Treatment of Mood Disorders,” Journal of Neurotherapy, vol. 4, no. 4, pp. 11-18, 2001/07/17, 2001.
[9] J. A. Pineda, “The functional significance of mu rhythms: translating "seeing" and "hearing" into "doing",” Brain Res Brain Res Rev, vol. 50, no. 1, pp. 57-68, Dec 1, 2005.
[10] A. Cortoos, E. De Valck, M. Arns, M. H. Breteler, and R. Cluydts, “An exploratory study on the effects of tele-neurofeedback and tele-biofeedback on objective and subjective sleep in patients with primary insomnia,” Appl Psychophysiol Biofeedback, vol. 35, no. 2, pp. 125-34, Jun, 2010.
[11] J. Gruzelier, “A theory of alpha/theta neurofeedback, creative performance enhancement, long distance functional connectivity and psychological integration,” Cogn Process, vol. 10 Suppl 1, no. 1, pp. S101-9, Feb, 2009.
[12] V. J. Monastra, S. Lynn, M. Linden, J. F. Lubar, J. Gruzelier, and T. J. LaVaque, “Electroencephalographic biofeedback in the treatment of attention-deficit/hyperactivity disorder,” Appl Psychophysiol Biofeedback, vol. 30, no. 2, pp. 95-114, Jun, 2005.
[13] J. R. Wang, and S. Hsieh, “Neurofeedback training improves attention and working memory performance,” Clin Neurophysiol, vol. 124, no. 12, pp. 2406-20, Dec, 2013.
[14] A. W. Keizer, R. S. Verment, and B. Hommel, “Enhancing cognitive control through neurofeedback: a role of gamma-band activity in managing episodic retrieval,” Neuroimage, vol. 49, no. 4, pp. 3404-13, Feb 15, 2010.
[15] B. Zoefel, R. J. Huster, and C. S. Herrmann, “Neurofeedback training of the upper alpha frequency band in EEG improves cognitive performance,” Neuroimage, vol. 54, no. 2, pp. 1427-31, Jan 15, 2011.
[16] D. Vernon, T. Egner, N. Cooper, T. Compton, C. Neilands, A. Sheri, and J. Gruzelier, “The effect of training distinct neurofeedback protocols on aspects of cognitive performance,” Int J Psychophysiol, vol. 47, no. 1, pp. 75-85, Jan, 2003.
[17] T. Egner, and J. H. Gruzelier, “Ecological validity of neurofeedback: modulation of slow wave EEG enhances musical performance,” NeuroReport, vol. 14, no. 9, pp. 1221-1224, 2003.
[18] J. H. Gruzelier, T. Egner, E. Valentine, and A. Williamon, “Comparing learned EEG self-regulation and the Alexander technique as a means of enhancing musical performance,” in in Proc. of the 7th Int. Conf. on Mus. Percept. and Cogn, Adelaide, 2002, pp. 89-92.
[19] W. Klimesch, P. Sauseng, and S. Hanslmayr, “EEG alpha oscillations: the inhibition-timing hypothesis,” Brain Res Rev, vol. 53, 2007.
[20] A. Anokhin, and F. Vogel, “EEG alpha rhythm frequency and intelligence in normal adults,” Intelligence, vol. 23, no. 1, pp. 1-14, Jul-Aug, 1996.
[21] M. Doppelmayr, W. Klimesch, K. Hodlmoser, P. Sauseng, and W. Gruber, “Intelligence related upper alpha desynchronization in a semantic memory task,” Brain Res Bull, vol. 66, no. 2, pp. 171-7, Jul 30, 2005.
[22] O. Jensen, “Oscillations in the Alpha Band (9-12 Hz) Increase with Memory Load during Retention in a Short-term Memory Task,” Cerebral Cortex, vol. 12, no. 8, pp. 877-882, August 1, 2002, 2002.
[23] W. Klimesch, “EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis,” Brain Res Brain Res Rev, vol. 29, no. 2-3, pp. 169-95, Apr, 1999.
[24] M. Doppelmayr, W. Klimesch, J. Schwaiger, P. Auinger, and T. Winkler, “Theta synchronization in the human EEG and episodic retrieval,” Neurosci Lett, vol. 257, no. 1, pp. 41-4, Nov 20, 1998.
[25] P. Sauseng, W. Klimesch, M. Doppelmayr, T. Pecherstorfer, R. Freunberger, and S. Hanslmayr, “EEG alpha synchronization and functional coupling during top-down processing in a working memory task,” Hum Brain Mapp, vol. 26, no. 2, pp. 148-55, Oct, 2005.
[26] J. J. Hsueh, T. S. Chen, J. J. Chen, and F. Z. Shaw, “Neurofeedback training of EEG alpha rhythm enhances episodic and working memory,” Hum Brain Mapp, vol. 37, no. 7, pp. 2662-75, Jul, 2016.
[27] T. Y. Wei, D. W. Chang, Y. D. Liu, C. W. Liu, C. P. Young, S. F. Liang, and F. Z. Shaw, “Portable wireless neurofeedback system of EEG alpha rhythm enhances memory,” Biomed Eng Online, vol. 16, no. 1, pp. 128, Nov 13, 2017.
[28] J. V. Hardt, and R. Gale, “Creativity increases in scientists through alpha EEG feedback training,” in in Proc. of the 24th Ann. Meet. of the Assoc. for Appl, Los Angeles, CA, 1993.
[29] O. M. Bazanova, and M. B. Shtark, “Biofeedback in optimizing psychomotor reactivity: I. Comparison of biofeedback and common performance practice,” Hum Physiol, vol. 33, no. 4, pp. 400-408, 2007.
[30] W. Nan, J. P. Rodrigues, J. Ma, X. Qu, F. Wan, P. I. Mak, P. U. Mak, M. I. Vai, and A. Rosa, “Individual alpha neurofeedback training effect on short term memory,” Int J Psychophysiol, vol. 86, no. 1, pp. 83-7, Oct, 2012.
[31] J. Virkkala, J. Hasan, A. Varri, S. L. Himanen, and K. Muller, “Automatic sleep stage classification using two-channel electro-oculography,” J Neurosci Methods, vol. 166, no. 1, pp. 109-15, Oct 15, 2007.
[32] D. W. Chang, Y. D. Liu, C. P. Young, J. J. Chen, Y. H. Chen, C. Y. Chen, Y. C. Hsu, F. Z. Shaw, and S. F. Liang, “Design and Implementation of a Modularized Polysomnography System,” IEEE Trans Instrum Meas, vol. 61, no. 7, pp. 1933-1944, Jul, 2012.
[33] S. F. Liang, C. E. Kuo, Y. C. Lee, W. C. Lin, Y. C. Liu, P. Y. Chen, F. Y. Cherng, and F. Z. Shaw, “Development of an EOG-Based Automatic Sleep-Monitoring Eye Mask,” IEEE Trans Instrum Meas, vol. 64, no. 11, pp. 2977-2985, Nov, 2015.
[34] H. T. Cheng, and W. H. Zhuang, “Bluetooth-Enabled in-Home Patient Monitoring System: Early Detection of Alzheimer's Disease,” Ieee Wireless Communications, vol. 17, no. 1, pp. 74-79, Feb, 2010.
[35] R. Chai, G. R. Naik, S. H. Ling, and H. T. Nguyen, “Hybrid brain–computer interface for biomedical cyber-physical system application using wireless embedded EEG systems,” Biomed Eng Online, vol. 16, 2017.
[36] C. H. Im, H. J. Hwang, H. Che, and S. Lee, “An EEG-based real-time cortical rhythmic activity monitoring system,” Physiological Measurement, vol. 28, no. 9, pp. 1101-1113, Sep, 2007.
[37] Y. T. Wang, Y. Wang, and T. P. Jung, “A cell-phone-based brain-computer interface for communication in daily life,” J Neural Eng, vol. 8, no. 2, pp. 025018, Apr, 2011.
[38] W. Nan, J. P. Rodrigues, J. Ma, X. Qu, F. Wan, P. I. Mak, P. U. Mak, M. I. Vai, and A. Rosa, “Individual alpha neurofeedback training effect on short term memory,” Int J Psychophysiol, vol. 86, 2012.
[39] B. Zoefel, R. J. Huster, and C. S. Herrmann, “Neurofeedback training of the upper alpha frequency band in EEG improves cognitive performance,” NeuroImage, vol. 54, no. 2, pp. 1427-1431, 1/15/, 2011.
[40] C. Escolano, M. Navarro-Gil, J. Garcia-Campayo, and J. Minguez, “The effects of a single session of upper alpha neurofeedback for cognitive enhancement: a sham-controlled study,” Appl Psychophysiol Biofeedback, vol. 39, 2014.
[41] E. Angelakis, S. Stathopoulou, J. L. Frymiare, D. L. Green, J. F. Lubar, and J. Kounios, “EEG neurofeedback: a brief overview and an example of peak alpha frequency training for cognitive enhancement in the elderly,” Clin Neuropsychol, vol. 21, 2007.
[42] P. P. Caffier, U. Erdmann, and P. Ullsperger, “Experimental evaluation of eye-blink parameters as a drowsiness measure,” European Journal of Applied Physiology, vol. 89, no. 3, pp. 319-325, May 01, 2003.
[43] Y. Sun, and X. Yu, “An innovative nonintrusive driver assistance system for vital signal monitoring,” IEEE Journal of Biomedical and Health Informatics, vol. 18, no. 6, pp. 1932-1939, 2014.
[44] F. Behrens, M. Mackeben, and W. Schroder-Preikschat, “An improved algorithm for automatic detection of saccades in eye movement data and for calculating saccade parameters,” Behav Res Methods, vol. 42, no. 3, pp. 701-8, Aug, 2010.
[45] J. Tong, J. Maruta, K. J. Heaton, A. L. Maule, and J. Ghajar, “Adaptation of visual tracking synchronization after one night of sleep deprivation,” Exp Brain Res, vol. 232, no. 1, pp. 121-31, Jan, 2014.
[46] B. Bolte, and M. Lappe, “Subliminal Reorientation and Repositioning in Immersive Virtual Environments using Saccadic Suppression,” IEEE Trans Vis Comput Graph, vol. 21, no. 4, pp. 545-52, Apr, 2015.
[47] Y. Zhuang, L. Chen, X. S. Wang, and J. Lian, “A Weighted Moving Average-based Approach for Cleaning Sensor Data,” in 27th Int. Conf. on Distrib. Comput. Syst, 2007, pp. 38-38.
[48] T. Dempster, and D. Vernon, “Identifying indices of learning for alpha neurofeedback training,” Appl Psychophysiol Biofeedback, vol. 34, no. 4, pp. 309-28, Dec, 2009.
[49] A. R. Jensen, and R. A. Figueroa, “Forward and backward digit span interaction with race and IQ: predictions from Jensen's theory,” J Educ Psychol, vol. 67, no. 6, pp. 882-93, Dec, 1975.
[50] W. Plihal, and J. Born, “Effects of early and late nocturnal sleep on declarative and procedural memory,” J Cogn Neurosci, vol. 9, 1997.
[51] J. H. Gruzelier, “EEG-neurofeedback for optimising performance. I: A review of cognitive and affective outcome in healthy participants,” Neuroscience and Biobehavioral Reviews, vol. 44, pp. 124-141, Jul, 2014.
[52] D. Vernon, T. Egner, N. Cooper, T. Compton, C. Neilands, A. Sheri, and J. Gruzelier, “The effect of training distinct neurofeedback protocols on aspects of cognitive performance,” Int J Psychophysiol, vol. 47, 2003.
[53] J. Juhel, “The effects of neurofeedback training on memory performance in elderly subjects,” Psychology, vol. 2, 2011.
[54] M. Doppelmayr, W. Klimesch, W. Stadler, D. Pöllhuber, and C. Heine, “EEG alpha power and intelligence,” Intelligence, vol. 30, 2002.
[55] W. Klimesch, “EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis,” Brain Res Rev, vol. 29, 1999.
[56] D. D. Luxton, R. A. McCann, N. E. Bush, M. C. Mishkind, and G. M. Reger, “mHealth for Mental Health: Integrating Smartphone Technology in Behavioral Healthcare,” Prof Psychol: Res Pract, vol. 42, no. 6, pp. 505-512, Dec, 2011.
[57] M. Doppelmayr, W. Klimesch, W. Stadler, D. Pollhuber, and C. Heine, “EEG alpha power and intelligence,” Intelligence, vol. 30, no. 3, pp. 289-302, 2002.
[58] M. Holtmann, S. Steiner, S. Hohmann, L. Poustka, T. Banaschewski, and S. BÖLte, “Neurofeedback in autism spectrum disorders,” Developmental Medicine & Child Neurology, vol. 53, no. 11, pp. 986-993, 2011.
[59] A. Zuberer, D. Brandeis, and R. Drechsler, “Are treatment effects of neurofeedback training in children with ADHD related to the successful regulation of brain activity? A review on the learning of regulation of brain activity and a contribution to the discussion on specificity,” Front Hum Neurosci, vol. 9, 2015.
[60] N. C. Moore, “A review of EEG biofeedback treatment of anxiety disorders,” Clin Electroencephalogr, vol. 31, 2000.
[61] K. Hoedlmoser, T. Pecherstorfer, G. Gruber, P. Anderer, M. Doppelmayr, W. Klimesch, and M. Schabus, “Instrumental conditioning of human sensorimotor rhythm (12–15 Hz) and its impact on sleep as well as declarative learning,” Sleep, vol. 31, 2008.
[62] A. Villringer, J. Planck, C. Hock, L. Schleinkofer, and U. Dirnagl, “Near infrared spectroscopy (NIRS): a new tool to study hemodynamic changes during activation of brain function in human adults,” Neurosci Lett, vol. 154, no. 1-2, pp. 101-4, May 14, 1993.
[63] G. Strangman, J. P. Culver, J. H. Thompson, and D. A. Boas, “A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation,” Neuroimage, vol. 17, no. 2, pp. 719-31, Oct, 2002.
[64] T. J. Huppert, R. D. Hoge, S. G. Diamond, M. A. Franceschini, and D. A. Boas, “A temporal comparison of BOLD, ASL, and NIRS hemodynamic responses to motor stimuli in adult humans,” Neuroimage, vol. 29, no. 2, pp. 368-82, Jan 15, 2006.
校內:2024-09-01公開