簡易檢索 / 詳目顯示

研究生: 陳政鴻
Chen, Jheng-Hong
論文名稱: 具可調中介直流電壓控制策略之高效率電源轉換器
A High Efficiency Power Converter with Adjustable Intermediate DC Voltage Control Strategy
指導教授: 李嘉猷
Lee, Jia-You
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 75
中文關鍵詞: 圖騰柱功率因數修正轉換器可調中介直流電壓控制策略動態開關延遲 時間高壓直流電源分配轉換器
外文關鍵詞: Totem-pole PFC converter, adjustable intermediate DC voltage control strategy, dynamic dead time, high-voltage DC power distribution converter
相關次數: 點閱:42下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨就應用於伺服器電源系統中之高壓直流電源分配轉換器,此轉換器是由功率因數修正轉換器與隔離高壓直流轉換器兩級電路建構,其目的是將交流電壓轉換高壓直流電輸出,經由輸出匯流排分配電力,並透過各級直流降壓轉換器分別供電於伺服器和網絡設備上。故針對電源分配轉換器於交流電應用電壓範圍與負載變動之兩種情況下,提出可調中介直流電壓控制策略並透過雙迴圈控制進行中介直流電壓調整,來達到此電路架構之導通率最佳化,俾以提升整體電源轉換器效率。文中利用所擬可調中介直流電壓控制策略,藉由高壓直流電源分配轉換器之 230 Vrms ± 20%應用範圍條件和圖騰柱功率因數修正轉換器架構下,若固定中介直流電壓,輸入交流電壓較高時,導通率越小會使得整體效率不佳,甚至也會讓功率因數變得更差,所以在輸入交流電為 277 Vrms時。中介電壓會從原 430 Vdc 直接提高至 450 Vdc,來使得導通率變大,得以提升效率與功率因數。其次於重載之情況下,隔離高壓直流轉換器若維持相同中介直流電壓,導通率越大會使得整體效率不佳,亦需要提高中介電壓,使得導通率變小,得以提升效率。並透過負載電流訊號進一步利調整開關間延遲時間,且配合 GaN MOSFET 的寬能隙特性,降低開關切換損更有效提升整體系統效率。文末為了驗證所提之控制策略之可行性,將透過電路模擬軟體驗證此控制策略下之電路穩定度及在動態負載的情況下,可有效地達到中介直流電壓之調整,並實作電路驗證本文所提之控制策略,可讓兩級電路架構之整體系統,於動態負載情況下,可快速調整中介直流電壓與動態開關延遲時間,實驗結果得知所提之控制策略可有效地提升效率。

    This dissertation aims to apply a high-voltage DC power distribution converter in server power systems. The converter is constructed by a power factor correction (PFC) converter and an isolated high-voltage DC converter, with the purpose of converting AC voltage to high- DC voltage, distributing power through the output bus, and supplying power to servers and network devices through DC buck converters. Therefore, for the power distribution converter under two conditions of AC voltage range and load variation, an adjustable intermediate DC voltage control
    strategy is proposed, and intermediate DC voltage adjustment is performed through dual-loop control to optimize the duty cycle, thus improving the overall efficiency of the power converter. By using the proposed adjustable intermediate DC voltage control strategy, under the application range condition of 230 Vrms ± 20% of the high-voltage DC power distribution converter and using the topology of totem-pole PFC converter, if the intermediate DC voltage is fixed, the smaller the duty cycle will be when the input AC voltage is higher, resulting in poor efficiency
    and even worse power factor. Therefore, when the input AC voltage is 277 Vrms, the intermediate voltage will be directly increased from the original 430 Vdc to 450 Vdc to increase the duty cycle, thereby improving efficiency and power factor. Secondly, under the condition of heavy load, if the isolated high-voltage DC converter maintains the same intermediate DC voltage, the duty cycle is larger and resulting in poor overall efficiency. Therefore, we need to increase the intermediate voltage to decrease the conduction rate and improve efficiency. By further adjusting the dead time between switches based on the load current signal and the wide bandgap characteristics of GaN MOSFET, the switching loss can be reduced to effectively improve the overall system efficiency. At the end of the dissertation, in order to verify the feasibility of the proposed control strategy, the circuit simulation software will be used to verify the stability of the circuit under this control strategy and the effective adjustment of the intermediate DC voltage under dynamic load. The control strategy proposed in this paper will be implemented in the circuit for verification, which enables the overall system of the two-level circuit structure to
    quickly adjust the intermediate DC voltage and dynamic dead time under dynamic load. The experimental results show that the proposed control strategy can effectively improve efficiency.

    摘要 I Abstract II 致謝 III Contents IV List of Tables VI List of Figures VII Chapter 1 Introduction 01 1.1 Background and Motivation 01 1.2 Contributions of the Dissertation 06 1.3 Organization of the Dissertation 07 Chapter 2 Development and Specification of Server Power Systems 09 2.1 Introduction 09 2.2 Totem-Pole PFC Converter Overview 10 2.3 Phase Shift Full Bridge Converter Overview 12 2.4 Summary 15 Chapter 3 Design of a GaN Totem-Pole PFC Converter Using a DC-Link Voltage Control Strategy 17 3.1 Introduction 17 3.2 The Proposed GaN Totem-Pole PFC Converter System 17 3.3 GaN HEMTS Power Loss Analysis 21 3.4 Feedback Compensation Analysis 26 3.5 Simulation and Experimental Results 29 3.6 Summary 37 Chapter 4 Interleaved Phase-Shift Full-Bridge Converter with Dynamic Dead-Time Control 38 4.1 Introduction 38 4.2 System Description 38 4.3 Dynamic Dead-Time Control 43 4.4 Steady Stability Condition of the Frequency-Domain Response 46 4.5 Small-Signal Model of a Closed-Loop Circuit 49 4.6 Analysis of the Dynamic Response 50 4.7 Simulations and Experimental Results 52 4.8 Summary 60 Chapter 5 Conclusions and Suggested Future Research 61 5.1 Conclusions 61 5.2 Future Research 62 References 63 Publication List. 74 Vita 75

    [1] A. F. Bakan, N. Altintas, and I. Aksoy, “An improved PSFB PWM dc-dc converter for high-power and frequency applications,” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 64–74, Jan. 2013.
    [2] Almazan, N. Vazquez, C. Hernandez, J. Alvarez, and J. Arau, “A comparison between the buck, boost and buck-boost inverters,” in Proc. IEEE CIEP., 2002, pp. 341-346.
    [3] A. M. Al Gabri, A. A. Fardoun, E. H. Ismail, “Bridgeless PFC-modified SEPIC rectifier with extended gain for universal input voltage applications,” IEEE Trans. Power Electron., vol. 30, no. 8, pp. 4272-4282, Aug. 2015.
    [4] A. A. Fardoun, E. H. Ismail, A. J. Sabzali, and M. A. Al-Saffar, “New efficient bridgeless Cuk rectifiers for PFC applications,” IEEE Trans. Power Electron., vol. 27, no. 7, pp. 3292–3301, Jul. 2012.
    [5] A. J. Sabzali, E. H. Ismail, M. A. Al-Saffar, and A. A. Fardoun, “New bridgeless DCM sepic and Cuk PFC rectifiers with low conduction and switching losses,” IEEE Trans. Ind. Appl., vol. 47, no. 2, pp. 873–881, Mar./Apr. 2011.
    [6] A. Safaee, P. Jain, and A. Bakhshai, “A ZVS pulsewidth modulation fullbridge converter with a low-RMS-current resonant auxiliary circuit,” IEEE Trans. Power Electron., vol. 31, no. 6, pp. 4031–4047, Jun. 2016.
    [7] B. Zhao, A. Abramovitz, and K. Smedley, “Family of bridgeless buck-boost PFC rectifiers,” IEEE Trans. Power Electron., vol. 30, no. 12, pp. 6524–6527, Dec. 2015.
    [8] B. Huang, G. Torrico, X. Ma, and Y. Liang, “High efficiency telecom rectifier designed for wireless communication networks,” in Proc. Int. Telecommun. Energy Conf., 2011, pp. 1–6.
    [9] B. Su, J. Zhang, and Z. Lu, “Totem-pole boost bridgeless PFC rectifier with simple zero-current detection and full-range ZVS operating at the boundary of DCM/CCM,” IEEE Trans. Power Electron., vol. 26, no. 2, pp. 427–435, Feb. 2011.
    [10] B. Gu, J. S. Lai, N. Kees, and C. Zheng, “Hybrid-switching full bridge dc-dc converter with minimal voltage stress of bridge rectifier, reduced circulating losses, and filter requirement for electric vehicle battery chargers,” IEEE Trans. Power Electron., vol. 28, no. 3, pp. 1132–1144, Mar. 2013.
    [11] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey, and D. P. Kothari, “A review of single-phase improved power quality AC-DC converters,” IEEE Trans. Ind. Electron., vol. 50, no. 5, pp. 962-981, Oct. 2003.
    [12] B. Su and Z. Lu, “An interleaved totem-pole boost bridgeless rectifier with reduced reverse-recovery problems for power factor correction,” IEEE Trans. Power Electron., vol. 25, no. 6, pp. 1406- 1415, Jun. 2010,.
    [13] B. Su, J. Zhang, and Z. Lu, “Totem-pole boost bridgeless PFC rectifier with simple zero-current detection and full-range ZVS operating at the boundary of DCM/CCM,” IEEE Trans. Power Electron., vol. 26, no. 2, pp. 427-435, Feb. 2011.
    [14] B. Y. Chen and Y. S. Lai, “Switching control technique of phase-shift controlled full-bridge converter to improve efficiency under light-load and standby conditions without additional auxiliary components,” IEEE Trans. Ind. Electron., vol. 25, no. 4, pp. 1001–1012, Apr. 2010.
    [15] C. Zhao, X. Wu, and Z. Qian, “Design and comparison of two frontend Dc/Dc Converters: LLC resonant converter and soft-switched phase shifted full-bridge converter with primary-side energy storage inductor,” in Proc. IEEE 24th Appl. Power Electron. Conf. Expo., Mar. 17–20, 2009, pp. 1073–1077.
    [16] C. S. Lin and C. L. Chen, “Single-wire current-share paralleling of current-mode-controlled dc power supplies,” IEEE Trans. Ind. Electron., vol. 47, no. 4, pp. 780-786, Aug. 2000.
    [17] C. Jiang, B. Lei, H. Teng, and H. K. Bai, “The power-loss analysis and efficiency maximization of a silicon-carbide MOSFET based three-phase 10 kW bi-directional EV charger using variable-DC-bus control,” in Proc. IEEE Energy Convers. Congr. Expo. (ECCE), Sep. 2016, pp. 1–6.
    [18] C. Y. Lim; J. K. Han, M. H. Park; K. W. Kim, and G. W. Moon,” Phase-Shifted Full-Bridge DC-DC Converter With High Efficiency and Reduced Output Filter Using Center-Tapped Clamp Circuit,” in Proc. 31th Annu. IEEE Appl. Power Electron. Conf. Expo. (APEC), pp. 1710-1715, Mar. 2019.
    [19] C. Qiao and K. M. Smedley, “A topology survey of single-stage power factor corrector with a boost type input-current-shaper,” IEEE Trans. Power Electron., vol. 16, no. 3, May 2001, pp. 360- 368.
    [20] D. De and V. Ramanarayanan, “A dc-to-three-phase-ac high-frequency link converter with compensation for nonlinear distortion,” IEEE Trans. Ind. Electron., vol. 57, no. 11, pp. 3169-3173, Nov. 2010.
    [21] D. Mishra, B. Singh and B. K. Panigrahi, “Adaptive current control for a bidirectional interleaved EV charger with disturbance rejection,” IEEE Trans. Ind. Appl., vol. 57, no. 4, pp. 4080-4090, July-Aug. 2021, doi: 10.1109/TIA.2021.3074612.
    [22] D. Y. Kim, C. E. Kim, and G. W. Moon, “Variable delay time method in the phase-shifted full-bridge converter for reduced power consumption under light load conditions,” IEEE Trans. Power Electron., vol. 28, no. 11, pp. 5120–5127, Nov. 2013.
    [23] D. M. Joo, B. K. Lee, and J. S. Kim, “Dead-time optimization for a phase shifted DC–DC full bridge converter with GaN HEMT,” IET Electron. Lett., vol. 52, no. 9, pp. 769–770, Apr. 2016.
    [24] D. D. Tran, H. N. Vu, S. Yu, and W. Choi, “A Novel soft-switching full-bridge converter with a combination of a secondary switch and a nondissipative snubber,” IEEE Trans. Power Electron., vol. 33, no. 2, pp. 1440–1452, Feb. 2018.
    [25] E. Kim and Y. Kim, “A ZVZCS PWM FB DC/DC converter using a modified energy-recovery snubber,” IEEE Trans. Ind. Electron., vol. 49, no. 5, pp. 1120–1127, Oct. 2002.
    [26] E. H. Ismail, “Bridgeless SEPIC rectifier with unity power factor and reduced conduction losses,” IEEE Trans. Power Electron., vol. 56, no. 4, pp. 1147–1157, Apr. 2009.
    [27] E. S. Kim and Y. H. Kim, “A ZVZCS PWM FB DC/DC converter using a modified energy-recovery snubber,” IEEE Trans. Ind. Electron., vol. 49,no. 5, pp. 1120–1127, Oct. 2002.
    [28] F. C. Lee, Q. Li, Z. Liu, Y. Yang, C. Fei, and M. Mu, “Application of GaN devices for 1 kW server power supply with integrated magnetics,” CPSS Trans. Power Electron. Appl., vol. 1, no. 1, pp. 3–12, Dec. 2016.
    [29] F. Musavi, W. Eberle, and W. G. Dunford, “A high-performance singlephase bridgeless interleaved PFC converter for plug-in hybrid electric vehicle battery chargers,” IEEE Trans. Ind. Appl., vol. 47, no. 4, pp. 1833–1843, Jul./Aug. 2011.
    [30] F. Wu, B. Sun, K. Zhao, and L. Sun, “Analysis and solution of current zero-crossing distortion with unipolar hysteresis current control in grid-connected inverter,” IEEE Trans. Ind. Electron., vol. 60, no. 10, pp. 4450-4457, Oct. 2013.
    [31] F. Wu, X. Li, and J. Duan, “Improved elimination scheme of current zero-crossing distortion in unipolar hysteresis current controlled grid-connected inverter,” IEEE Transactions on Industrial Informatics, vol. 11, no. 5, pp. 1111-1118, Oct. 2015.
    [32] F. Musavi, W. Eberle, and W. G. Dunford, “A high-performance single-phase bridgeless interleaved PFC converter for plug-in hybrid electric vehicle battery chargers,” IEEE Transactions on Industry Applications, vol. 47, no. 4, pp. 1833-1843, Jul.-Aug. 2011.
    [33] F. Musavi, M. Edington, W. Eberle, and W. G. Dunford, “Evaluation and efficiency comparison of front end AC-DC plug-in hybrid charger topologies,” IEEE Transactions on Smart Grid, vol. 3, no. 1, pp. 413- 421, Mar. 2012.
    [34] G. Koo, G. Moon, and M. Youn, “Analysis and design of phase shift full bridge converter with series-connected two transformers,” IEEE Trans. Power Electron., vol. 19, no. 2, pp. 411–419, Mar. 2004.
    [35] G. N. B. Yadav and N. L. Narasamma, “An active soft switched phaseshifted full-bridge DC–DC converter: Analysis, modeling, design, and implementation,” IEEE Trans. Power Electron., vol. 29, no. 9, pp. 4538– 4550, Sep. 2014.
    [36] H. Cha, L. Chen, R. Ding, Q. Tang, and F. Z. Peng, “An alternative energy recovery clamp circuit for full-bridge PWM converters with wide ranges of input voltage,” IEEE Trans. Power Electron., vol. 23, no. 6, pp. 2828– 2837, Nov. 2008..
    [37] H. S. Youn, J.-B. Lee, J. I. Baek, and G.-W. Moon, “A digital phase leading filter current compensation (PLFCC) technique for CCM boost PFC converter to improve PF in high line voltage and light load conditions,” IEEE Trans. Power Electron., vol. 31, no. 9, pp. 6596–6606, Sep. 2016.
    [38] H. S. Youn, J. S. Park, K. B. Park, J. I. Baek, and G. W. Moon, “A digital predictive peak current control for power factor correction with low-input current distortion,” IEEE Trans. Power Electron., vol. 31, no. 1, pp. 900–912, Jan. 2016.
    [39] H. Li, L. Zhao, C. Xu, and X. Zheng, “A dual half-bridge phase-shifted converter with wide ZVZCS switching range,” IEEE Trans. Power Electron., vol. 33, no. 4, pp. 2976–2985, Apr. 2018.
    [40] H. Ma, K. Zheng, H. Jiang and H. Yin, “A family of dual-boost bridgeless five-level rectifiers with common-core inductors,” IEEE Trans. Power Electron., vol. 36, no. 11, pp. 12565-12578, Nov. 2021.
    [41] H. Wu, J. Zhang, X. Qin, T. Mu, and Y. Xing, “Secondary-Side-Regulated soft-switching full-bridge three-port converter based on bridgeless boost rectifier and bidirectional converter for multiple energy interface,” IEEE Trans. Power Electron., vol. 31, no. 7, pp. 4847–4860, Jul. 2016.
    [42] I. H. Cho, K. M. Cho, J. W. Kim, and G. W. Moon, “A new phase-shifted full-bridge converter with maximum duty operation for server power system,” IEEE Trans. Power Electron., vol. 26, no. 12, pp. 3491– 3500, Dec. 2011.
    [43] I. O. Lee, G. W. Moon, “Soft-Switching DC/DC converter with a full ZVS range and reduced output filter for high-voltage applications,” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 112–122, Jan. 2013.
    [44] I. O. Lee and G. W. Moon, “Phase-shifted PWM converter with a wide ZVS range and reduced circulating current,” IEEE Trans. Power Electron., vol. 28, no. 2, pp. 908–919, Feb. 2013.
    [45] J. Rodriguez, J. S. Lai, and F. Z. Peng, “Multilevel inverters: A survey of topologies, controls, and applications,” IEEE Trans. Ind. Electron., vol. 49, no. 4, pp. 724–738, Aug. 2002.
    [46] J. Dudrik, and N. Trip, “Soft-switching PS-PWM DC-DC converter for full-load range applications,” IEEE Trans. Ind. Electron., vol. 57, no. 8, pp. 2807–2814, Aug. 2010.
    [47] J. Wang and J. Xu, “A novel PWM control method for switching DC-DC converters with improved dynamic response performance,” in Proc. IEEE PEDG’10, 2010, pp. 85–88.
    [48] J. C. Salmon, “Circuit topologies for single-phase voltage-doubler boost rectifiers,” IEEE Trans. Power Electron., vol. 8, no. 4, pp. 521–529, Oct. 1993.
    [49] J.-W. Shin, S.-J. Choi, and B.-H. Cho, “High-efficiency bridgeless flyback rectifier with bidirectional switch and dual output windings,” IEEE Trans. Power Electron., vol. 29, no. 9, pp. 4752–4762, Sep. 2014.
    [50] J. Chen, A. Prodic, R. W. Erickson, and D. Maksimovic, “Predictive digital current programmed control,” IEEE Trans. Power Electron., vol. 18, no. 1, pp. 411-419, Jan 2003.
    [51] J. Lu, A. Mallik, S. Zou, and A. Khaligh, “Variable DC-Link control loop design for an integrated two-stage AC/DC converter,” IEEE Trans. Transp. Electrific., vol. 4, no. 1, pp. 99–107, Mar. 2018.
    [52] J. W. Kim, D. Y. Kim, C. E. Kim, and G. W. Moon, “A simple switching control technique for improving light load efficiency in a phase-shifted full-bridge converter with a server power system,” IEEE Trans. Power Electron., vol. 29, no. 4, pp. 1562–1566, Apr. 2014.
    [53] K. Yao, Y. Ren, and F. C. Lee, “Critical bandwidth for the load transient response of voltage regulator modules,” IEEE Trans. Power Electron., vol.19, no. 6, pp. 1454–1462, Nov. 2004.
    [54] K. B. Park, C. E. Kim, G. W. Moon, and M. J. Youn, “Voltage oscillation reduction technique for phase-shift full-bridge converter,” IEEE Trans. Ind. Electron., vol. 54, no. 5, pp. 2779–2790, Oct. 2007.
    [55] K. V. R. Kishore, B. F. Wang, K. N. Kumar, and P. L. So, “A new ZVS full-bridge DC-DC converter for battery charging with reduced losses over full-load range,” IEEE Trans. Ind. Appl., vol. 54, no. 1, pp. 571–579, Jan./Feb. 2018.
    [56] L. Huber, Y. Jang, and M. M. Jovanovic, “Performance evaluation of bridgeless PFC boost rectifiers,” IEEE Trans. Power Electron., vol. 23, no. 3, pp. 1381–1390, May 2008.
    [57] L. Huber, Y. Jang, and M. M. Jovanovi´c, “A bridgeless PFC boost rectifier with optimized magnetic utilization,” IEEE Trans. Power Electron., vol. 24, no. 1, pp. 85–93, Jan. 2009.
    [58] L. C. Shih, Y. H. Liu, and H. J. Chiu, “A novel hybrid mode control for phase-shift full bridge converter featuring high efficiency over full load range,” IEEE Trans. Power Electron., vol. 34, no. 3, pp. 2794–2804, Mar. 2019.
    [59] L. Zhao, H. Li, X. Wu, and J. Zhang, “An improved phase-shifted fullbridge converter with wide-range ZVS and reduced filter requirement,” IEEE Trans. Ind. Electron., vol. 65, no. 3, pp. 2167–2176, Mar. 2018.
    [60] L. Huber, B. T. Irving, and M. M. Jovanovic, “Review and stability analysis of PLL-based interleaving control of DCM/CCM boundary boost PFC converters,” IEEE Trans. Power Electron., vol. 24, no. 8, pp. 1992-1999, Aug. 2009.
    [61] L, Zhao , H. Li, Y. Hou, and Y. Yu,” Peration analysis of a phase-shifted full bridge converter during the dead-time interval,” IET Power Electron., vol. 9, no. 9, pp. 1777-1783, Dec. 2016.
    [62] M. Brunoro and J. L. F. Vieira, “A high-performance ZVS full-bridge dc– dc 0–50-V/0–10-A power supply with phase-shift control,” IEEE Trans. Power Electron., vol. 14, no. 3, pp. 495–505, May 1999.
    [63] M. Borage, S. Tiwari, S. Bhardwaj, and S. Kotaiah, “A full-bridge DCDC converter with zero-voltage-switching over the entire conversion range,” IEEE Trans. Power Electron., vol. 23, no. 4, pp. 1743–1750, Jul. 2008.
    [64] M. Castilla, L. Garcia de Vicuna, J. M. Guerrero, J. Miret, and N. Berbel, “Simple low-cost hysteretic controller for single-phase synchronous buck converters,” IEEE Trans. Power Electron., vol. 22, no. 4, pp. 1232–241, Jul. 2007.
    [65] M. Y. Tsai, T. J. Liang, and Y. M. Lin, “Loss analysis and optimized design of DC-DC converter for battery module,” in Proc. IEEE 3rd Int. Future Energy Electron. Conf. ECCE Asia, Jun. 2017, pp. 692–697.
    [66] M. H. Park, J. Baek, Y. Jeong, and G. W. Moon,” An interleaved totem-pole bridgeless boost PFC converter with soft-switching capability adopting phase-shifting control,” IEEE Trans. Power Electron., vol. 34, no. 11, pp. 10610–10618, Nov. 2019.
    [67] M. M. Jovanovic, and Y. Jang, “State-of-the-art, single-phase, active power-factor-correction techniques for high-power applications-an overview,” IEEE Trans. Ind. Electron., vol. 52, no. 3, pp. 701-708, Jun. 2005.
    [68] M. Kasper, R. M. Burkart, G. Deboy, and J. N. W. Kolar, “ZVS of power MOSFETs revisited,” IEEE Trans. Power Electron., vol. 31, no. 12, pp. 8063–8067, Dec. 2016.
    [69] N. Swaminathan, and N. Lakshminarasamma, “The steady-state DC gain loss model, efficiency model, and the design guidelines for high-power, high-gain, low-input voltage DC-DC converter,” IEEE Trans. Ind. Appl., vol. 54, no. 2, pp. 1542–1554, Mar. 2018.
    [70] P. Sanchis, A. Ursua, E. Gubia, and L. Marroyo, “Design and experimental operation of a control strategy for the buck-boost dc-acinverter,” IEE Proc. Electr. Power Appl., vol. 152, no. 3, pp. 660-668, May 2005.
    [71] Q. Huang, Q. Ma, P. Liu, A. Q. Huang, and M. de Rooij, “3kW fourlevel flying capacitor totem-pole bridgeless PFC rectifier with 200 V GaN devices,” in Proc. IEEE Energy Convers. Congr. Expo. (ECCE), Sep. 2019, pp. 81–88.
    [72] Q. Huang, R. Yu, A. Q. Huang, and W. Yu, “Adaptive zero-voltage switching control and hybrid current control for high efficiency GaN-based MHz totem-pole PFC rectifier,” in Proc. IEEE Appl. Power Electron. Conf. Expo., Mar. 2017, pp. 1763–1770.
    [73] Q. Huang, Q. Ma, P. Liu, A. Q. Huang, and M. A. de Rooij, “99% efficient 2.5-kW four-level flying capacitor multilevel GaN totem-pole PFC.” IEEE J. Emerg. Sel. Topics Power Electron., vol. 36, no. 5, pp. 6046–6055, Mar. 2021.
    [74] R. Ayyanar and N. Mohan, “Novel soft-switching DC-DC converter with full ZVS-range and reduced filter requirement—Part I: Regulated-output applications,” IEEE Trans. Power Electron., vol. 16, no. 2, pp. 184–192, Mar. 2001.
    [75] R. Miftakhutdinov, “New aspects on analyzing ZVS conditions for converters using super-junction Si and wide bandgap SiC and GaN power FETs,” in Proc. 16th Eur. Conf. Power Electron. Appl., Aug. 26–28, 2014, pp. 1–9.
    [76] R. Redl, N. O. Sokal, and L. Balogh, “A novel soft-switching full-bridge DC/DC converter: Analysis design considerations and experimental results at 1.5 kW, 100 kHz,” IEEE Trans. Power Electron., vol. 6, no. 3, pp. 408–418, Jul. 1991.
    [77] S. S. Fazel, S. Bernet, D. Krug, and K. Jalili, “Design and comparison of 4-kV neutral-point-clamped, flying-capacitor, and series-connected H-bridge multilevel converters,” IEEE Trans. Ind. Appl., vol. 43, no. 4, pp. 1032–1040, Jul./Aug. 2007.
    [78] S. Qin, Y. Lei, Z. Ye, D. Chou, and R. C. N. PilawaPodgurski, “A high power-density power factor correction front end based on seven-level flying capacitor multilevel converter,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 7, no. 3, pp. 1883–1898, Sep. 2019.
    [79] S. H. Lee, C. Y. Park, J. M. Kwon, and B. H. Kwon, “Hybrid-Type full bridge DC/DC converter with high efficiency,” IEEE Trans. Power Electron., vol. 30, no. 8, pp. 4156–4164, Aug. 2015.
    [80] T. T. Vu and G. Young, “Implementation of multi-level bridgeless PFC rectifiers for mid-power single phase applications,” in Proc. IEEE Appl. Power Electron. Conf. Expo., Mar. 2016, pp. 1835–1841.
    [81] T. T. Vu, and E. Mickus, “99% efficiency 3-level bridgeless totem-pole PFC implementation with low-voltage silicon at low cost,” in Proc. IEEE Appl. Power Electron. Conf. Expo., Mar. 2019, pp. 2077–2083.
    [82] T. Palacios, S. Rajan, A. Chakraborty, S. Heikman, S. Keller, S. P. DenBaars, and U. K. Mishra, “Influence of the dynamic access resistance in the gm and fT linearity of AlGaN/GaN HEMTs,” IEEE Trans. Electron Devices, vol. 52, no. 10, pp. 2117–2123, Oct. 2005.
    [83] T. Fang, R. Wang, H. Xing, S. Rajan, and D. Jena, “Effect of optical phonon scattering on the performance of GaN transistors,” IEEE Electron Device Lett., vol. 33, no. 5, pp. 709–711, May 2012.
    [84] V. R. K. Kanamarlapudi, B. Wang, P. L. So, and Z. Wang, “Analysis, design, and implementation of an APWM ZVZCS full-bridge DC–DC converter for battery charging in electric vehicles,” IEEE Trans. Power Electron., vol. 32, no. 8, pp. 6145–6160, Aug. 2017.
    [85] X. Wu, X. Xie, J. Zhang, R. Zhao, and Z. Qian, “Soft switched full bridge DC-DC converter with reduced circulating loss and filter requirement,” IEEE Trans. Power Electron., vol. 22, no. 5, pp. 1949–1955, Sep. 2007.
    [86] X. Liu, J. Xu, Z. Chen, and N. Wang, “Single-inductor dual-output buck-boost power factor correction converter,” IEEE Trans. Ind. Electron., vol. 62, no. 2, pp. 943–952, Feb. 2015.
    [87] X. Wang, C. Jiang, B. Lei, H. Teng, H. K. Bai and J. L. Kirtley, “Power loss analysis and efficiency maximization of a Silicon-Carbide MOSFET-based three-phase 10-kW bidirectional EV charger using variable-DC-bus control,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 4, no. 3, pp. 880-892, Sept. 2016.
    [88] W. Zhang, X. Huang, F. C. Lee and Q. Li, "Gate drive design considerations for high voltage cascode GaN HEMT", in Proc. 29th Annu. IEEE Appl. Power Electron. Conf. Expo. (APEC), pp. 1484-1489, Mar. 2014.
    [89] W. Chen, X. Ruan, Q. Chen, and J. Ge, “Zero-voltage-switching PWM fullbridge converter employing auxiliary transformer to reset the clamping diode current,” IEEE Trans. Power Electron., vol. 25, no. 5, pp. 1149– 1162, May 2010.
    [90] W. Zhao, D. D. C. Lu, and V. G. Agelidis, “Current control of grid-connected boost inverter with zero steady-state error,” IEEE Trans. Power Electron., vol. 26, no. 10, pp. 2825-2834, Oct. 2011.
    [91] W. Yu, J.-S. Lai, W.-H. Lai, and H. Wan, “Hybrid resonant and PWM converter with high efficiency and full soft-switching range,” IEEE Trans. Power Electron., vol. 27, no. 12, pp. 4925–4933, Dec. 2012.
    [92] W. Konrad, G. Deboy, and A. Muetze, “A power supply achieving titanium level efficiency for a wide range of input voltages,” IEEE Trans. Power Electron., vol. 32, no. 1, pp. 117–127, Jan. 2017.
    [93] W. Lu, S. Lang, L. Zhou, H. H. C. Iu, and T. Fernando, “Improvement of stability and power factor in PCM controlled boost PFC converter with hybrid dynamic compensation,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 62, no. 1, pp. 320-328, Jan. 2015.
    [94] Y. Yang, Z. Liu, F. C. Lee and Q. Li, "Analysis and filter design of differential mode EMI noise for GaN-based interleaved MHz critical mode PFC converter", in Proc. IEEE Energy Convers. Congr. Expo., pp. 4784-4789, Sep. 2014.
    [95] Y. K. Lo, C. Y. Lin, M. T. Hsich, and C. Y. Lin, “Phase-shifted full-bridge series-resonant dc-dc converters for wide load variations,” IEEE Trans. Ind. Electron., vol. 58, no. 6, pp. 2572–2575, Jun. 2011.
    [96] Y. Jiang, , Z. Chen, and J. Pan,”Zero-voltage switching phase shift full-bridge step-up converter with integrated magnetic structure,” IET Power Electron., pp. 732–739, Mar. 2010.
    [97] Y. D. Kim, I. O. Lee, I. H. Cho, and G. W. Moon, “Hybrid dual full bridge DC–DC converter with reduced circulating current, output filter, and conduction loss of rectifier stage for RF power generator application, ”IEEE Trans. Power Electron., vol. 29, no. 3, pp. 1069–1081, Mar. 2014.
    [98] Y. Shen, W. Zhao, Z. Chen, and C. Cai, “Full-bridge LLC resonant converter with series-parallel connected transformers for electric vehicle onboard charger,” IEEE Access., vol. 6, pp. 13490–13500, 2018.
    [99] Y. Cao and D. Jena, “High-mobility window for two-dimensional electron gases at ultrathin AlN/GaN heterojunctions,” Appl. Phys. Lett., vol. 90, no. 18, p. 182 112-3, Apr. 2007.
    [100]Y. Jang, M. M. Jovanovic, and Y. Chang, “A new ZVS-PWM full-bridge ´ converter,” IEEE Trans. Power Electron., vol. 18, no. 5, pp. 1122–1129, Sep. 2003.
    [101]Y. Shin, C. Kim, and S. Han, “A pulse frequency modulated full bridge DC/DC converter with series boost capacitor,” IEEE Trans. Ind. Electron., vol. 58, no. 11, pp. 5154–5162, Nov. 2011.
    [102]Y. Jang and M. M. Jovanovic, “A bridgeless PFC boost rectifier with optimized magnetic utilization,” IEEE Trans. Power Electron, vol. 24, no. 1, pp. 85-93, Jan. 2009.
    [103]Z. Liu, X. Huang, M. Mu, Y. Yang, F. C. Lee and Q. Li, "Design and evaluation of GaN-based dual-phase interleaved MHz critical mode PFC converter", in Proc. IEEE Energy Convers. Congr. Expo., pp. 611-616, Sep. 2014.
    [104] Z. Liu, Z. Huang, F. C. Lee and Q. Li, "Digital-based interleaving control for GaN-based MHz CRM totem-pole PFC", in Proc. IEEE Appl. Power Electron. Conf. Expo. (APEC), pp. 1847-1852, Mar. 2016.
    [105]Z. Yao, L. Xiao, and Y. Yan, “Dual-buck full-bridge inverter with hysteresis current control,” IEEE Trans. Ind. Electron., vol. 56, no. 8, pp. 3153-3160, Aug. 2009.
    [106]Z. Chen, B. Liu, Y. Yang, P. Davari and H. Wang, “Bridgeless PFC topology simplification and design for performance benchmarking,” IEEE Trans. Power Electron., vol. 36, no. 5, pp. 5398-5414, May 2021.
    [107]Z. Chen, B. Liu, P. Davari, and H. Wang, “Efficiency enhancement of bridgeless buck-boost PFC converter with unity PF and DC split to reduce voltage stresses,” in Proc. Annu. Conf. Ind. Electron. Soc., 2018, pp. 1187–1192.
    [108]Z. Liu, Z. Huang, F. C. Lee, and Q. Li, “Digital-based interleaving control for GaN MHz CRM totem-pole PFC,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 4, no. 3, pp. 808-814, Sept. 2016.

    無法下載圖示 校內:2026-03-27公開
    校外:2026-03-27公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE