| 研究生: |
李偉綸 Lee, Wei-Lun |
|---|---|
| 論文名稱: |
曲率對動態地形曲面上流體行為之影響 Curvature Effects on the Flow Behavior over Deforming Topography |
| 指導教授: |
戴義欽
Tai, Yih-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 84 |
| 中文關鍵詞: | 地形曲率 、地形座標系統 、顆粒流 |
| 外文關鍵詞: | curvature, terrain-following coordinates, granular flow |
| 相關次數: | 點閱:82 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
顆粒流因為和山崩、土石流等環境流體具有部分相似的性質,故可藉由研究顆粒流的運動行為來推估山崩、土石流的特性,用以預測影響範圍及危害程度以達防災之目的,除了實驗方法外,近年來數值模擬也正蓬勃發展。本文的研究係將顆粒流分為流動層與底床層兩個部分,兩層之間透過侵蝕與堆積轉換,並考慮到山崩、土石流發生時底床的侵蝕堆積現象劇烈,底床傾角變動很大,亦即地形曲率的變化很大。目前有將地形曲率以離心力的形式考慮進控制方程式中,但對於其他可能受曲率影響的流體參數之研究尚缺乏,因此本研究著重於曲率在動態地形上對流體行為之影響,包含流體厚度、運移距離、侵蝕/堆積率和網格大小等。並透過地形座標系統將理論模型建立在隨變動底床運動的座標軸上,以此來描述顆粒流在可侵蝕底床上的動態行為。數值方法使用兼具shock-capturing特性的Non-Oscillatory Central (NOC) scheme,探討流體行為在不同曲率變化上的影響。
In order to predict the propagation, path and run-out distance of landslides and debris flows, it is of special interest to research the property of granular flows. In the present study, there is a non-material singular surface with mass flux through it which divides granular flows into two layers: a rapid surface flowing layer and a stagnant base. When landslides or debris flows occur, the erosion and deposition proceed between the two layers. The model equations are derived either in conventional Cartesian coordinates system with topographic correction or in curve-linear coordinate system with shallow curvature. Up to now, the contribution of the local curvature in the model equations is the centrifugal force alone. The study of the other effects caused by curvature on the flow behavior is rather rare. In this paper, we focus on how the local curvature influence the flow behavior, such as the flow thickness, run-out distance, erosion/deposition rate or even the mesh-size-dependency. The evolution of the topography is described by a moving coordinate model. For the numerical method, we use a shock-capturing non-oscillatory central (NOC) scheme. The numerical results show that our theory is a remarkably qualitative agreement between the simulation and the one-sided collapse flow experiment.
[1] Bouchut, F. and Westdickenberg, M. (2004). “Gravity driven shallow water models for arbitrary topography.” Commun. Math. Sci., 2, 359–389.
[2] Bouchaud, J. P., Cates, M.E., Ravi Prakash, J. and Edwards, S.F. (1994). “A model for the dynamics of sandpile surfaces.” J. Phys. I Fr. 4, 1383–1410.
[3] Cundall, P. A. and Strack, O. D. L. (1979). “A discrete numerical model for granular assembiles.” Géotechnique, 47–65.
[4] Guthrie, R. H. and Evans, S. G. (2007). “Work, persistence, and formative events: The geomorphic impact of landslides.” Geomorphology, 88, 266–275.
[5] Gray, J. M. N. T., Wieland, M. and Hutter, K. (1999). “Gravity-driven free surface flow of granular avalanches over complex basal topography.” Proc. R. Soc.Lond. A 1999 455, 1841–1874.
[6] GDR MiDi. (2004). “On dense granular flow.” European Physical Journal E, 14, 341–365.
[7] Gray, J. M. N. T., Tai, Y. C. and Noelle, S. (2003). “Shock waves, dead zones and particle-free regions in rapid granular free surface flows.” J. Fluid Mech., 491, 161–181.
[8] Hutter, K., Siegel, M., Savage, S. B. and Nohguchi, Y. (1993). “Two-dimensional spreading of a granular avalanche down an inclined plane. Part I. Theory.” Acta Mech., 100, 37–68.
[9] Hutter, K., Wang, Y. and Pudasaini, S. (2005). “The Savage–Hutter model, how far can it be pushed?” Philos. Trans. R. Soc. A 2005 363, 1507–41528.
[10] Hui, W. H., Li, P. Y. and Li, Z. W. (1999). “A unified coordinate system for solving the two-dimensional Euler equations.” Journal of Computational Physics, 153, 596–637.
[11] Hui, W. H. (2004). “A unified coordinates approach to computational fluid dynamics.” J. Comput. Appl. Math., 163, 15–28.
[12] Hui, W. H. (2007). “The unified coordinate system in computational fluid dynamics.” Commun. Comput. Phys., 2(4), 577–610.
[13] Jop, P., Forterre, Y. and Pouliquen, O. (2005). “Crucial role of sidewalls in granular surface flows: consequences for the rheology.” Journal of Fluid Mechanics, 541, 167–192.
[14] Labra, C., Rojek, J., Onate, E. and Zarate, F. (2008). “Advances in discrete element modelling of underground excavations.” Acta Geotech, 3, 317–322.
[15] Lube, G. and Huppert, H. E. (2005). “Collapses of two-dimensional granular columns.” Physical Review E, 72, 041301–1–10.
[16] Lajeunesse, E., Monnier, J. B. and Homsy, M. (2005). “Granular slumping on a horizontal surface.” Physics of Fluids, 17, 10330121–15.
[17] Luca, I., Hutter, K., Kuo, C. Y. and Tai, Y. C. (2009). “Two-layer models for shallow avalanche flows over arbitrary variable topography.” Int. J. Adv. Eng. Sci. Appl. Math. (AESAM), 1, 99–121.
[18] LeVeque, R. J. (1992). Numerical Methods for Conservation Laws(Birh¨auser Verlag.), Basel/Boston/New York.
[19] Nessyahu, H. and Tadmor, E. (1990). “Non-oscillatory central differencing for hyperbolic conservation laws.” J. Comput. Phys., 87, 408–463.
[20] P. G. de Gennes (1998). “Granular matter: a tentative view.” Rev. Mod. Phys., 71, 374–382.
[21] Richard, G. L. and Gavrilyuk, S. L. (2012). “A new model of roll waves: comparison with Brock’s experiments.” J. Fluid Mech., 698, 374–405.
[22] Shi, G. H. (1992). “Discontinuous Deformation Analysis: A new Numerical Model for the Static and Dynamics of Deformable Block systems.” Engineering Computations., 9, 157–168.
[23] Sibille, L., Donze´, F. V., Nicot, F., Chareyre, B. and Darve, F. (2008). “From bifurcation to failure in a granular material: a DEM analysis.” Acta Geotech., 3, 15–24.
[24] Savage, S. B. and Hutter, K. (1989). “The motion of a finite mass of granular material down a rough incline.” J. Fluid Mech., 199, 177–215.
[25] Savage, S. B. and Hutter, K. (1991). “The dynamics of avalanches of granular materials from initiation to runout. Part I: Analysis.” Acta. Mech., 86, 201–223.
[26] Tai, Y. C. and Kuo, C. Y. (2008). “A New Model of Granular Flows over General Topography with Erosion and Deposition.” Acta Mechanica, 199, 71–96.
[27] Tai, Y. C., Wang, Y., Gary, J. M. N. T. and Hutter, K. (1999). “Methods of similitudes in granular avalanche flows.” In Advances in Cold-Region Thermal Engineering and Sciences Lecture notes in physics, 533,415–428.
[28] Yee, H.C. (1987). “Construction of explicit and implicit symmetric TVD schemes and their applications.” J. Comput. Phys., 68, 151.
[29] William Thielicke and Eize J. Stamhuis (2010). PIVlab software, http://pivlab.blogspot.tw/.
[30] 台灣總督府氣象台(1942),「嘉義地方烈震報告」,227。
[31] 吳瑞賢、林松青、蘇文瑞、洪明瑞、廖偉民、廖偉信、張哲豪、韋家振(2006),「天然災害防治導論」,台北市:全華圖書股份有限公司。
[32] 李錫堤(2011),「草嶺大崩山之地質與地形演變」,中華水土保持學報,42(4),325–335。
[33] 陳建樺(2008),「在水平面上的顆粒物質崩塌過程之內部結構探討」,國立暨南國際大學土木工程學系碩士論文。
[34] 黃智煜(2009),「以實驗探討顆粒流之崩落流動狀態」,國立暨南國際大學土木工程學系碩士論文。
[35] 黃立政(2004),「土石流災害防治概論」,台北市:全華圖書股份有限公司。
[36] 詹錢登(2000),「土石流概論」,台北市:科技圖書股份有限公司。