簡易檢索 / 詳目顯示

研究生: 鄭秉恩
Cheng, Ping-En
論文名稱: 混合慣性與光學感測技術之互動式手寫筆系統之研製
Development of a Hybrid Inertial-optical Interactive Handwritten Pen
指導教授: 王振興
Wang, Jeen-Shing
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 61
中文關鍵詞: 手寫筆慣性感測光學感測擴展式卡爾曼濾波器
外文關鍵詞: handwritten pen, inertial sensing, optical sensing, extended Kalman filter
相關次數: 點閱:105下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在開發以慣性感測元件為基礎之手寫技術用以改善光學感測技術之互動式手寫筆現有的技術缺點,其主要目的為混合慣性及光學感測技術及開發相關慣性訊號演算法,使得互動式手寫筆成為一人性化人機互動介面。首先,我們整合慣性感測系統、光學感測系統與單晶片系統形成具即時運算功能之互動式手寫筆,並藉由射頻無線傳輸的方式將使用者握持手寫筆書寫時所產生的慣性及光學感測訊號傳送至電腦端,進行書寫軌跡補償及估測;其次,為了獲得準確的姿態估測,我們發展了一基於擴展式卡爾曼濾波器的慣性感測姿態估測演算法,用以降低慣性感測器訊號的雜訊及飄移在姿態估測上所造成的誤差。接著,我們利用該手寫筆研發高效能、低誤差的握筆姿態補償與提筆軌跡估測演算法。最後,經由實驗結果已成功地驗證互動式手寫筆具備下列特性與功能:(1)可準確地估測手寫姿態;(2)具二維平面書寫握筆姿態補償及提筆軌跡估測功能。

    The objective of this thesis is to develop inertial-sensor-based handwriting technology to improve the existing technical disadvantages of optical interactive handwritten pens. At first, we integrate the inertial-sensing system, the optical-sensing system, and a single chip microcontroller into interactive handwritten pens, and the inertial and optical signals generated by handwriting movements are transmitted to a computer via a RF wireless transmission module. Subsequently, we utilized a sensor fusion algorithm based on an extended Kalman filter to minimize the cumulative errors caused by the intrinsic noise/drift of the inertial sensors. Then, through a firmware and software co-design method, we’ll develop interactive handwritten pens with the functions of pen-holding posture compensation and stroke segmentation trajectory estimation algorithm. Finally, the experimental results have successfully validated that the interactive handwritten pens with below innovative functions: (1) estimation of accurate hand movement orientations and (2) compensation of pen-holding postures and estimation of stroke segmentation trajectories in a two-dimensional writing plane.

    中文摘要 i 英文摘要 ii 誌謝 iii 目錄 iv 表目錄 vi 圖目錄 vii 第1章 緒論 1 1.1 研究背景與動機 1 1.2 文獻探討 2 1.3 研究目的 5 1.4 論文架構 6 第2章 互動式手寫筆硬體架構 7 2.1 光學滑鼠之基本原理 7 2.2 互動式手寫筆 10 第3章 慣性感測訊號處理 11 3.1 慣性感測訊號前處理 11 3.1.1 慣性感測器校正 11 3.1.2 慣性感測訊號濾波 14 3.2 慣性感測姿態估測 14 3.2.1 姿態表示法 14 3.2.2 擴展式卡爾曼濾波器 16 3.2.2.1 狀態預測 17 3.2.2.2 狀態更新 17 第4章 互動式手寫筆之手寫技術應用 20 4.1握筆姿態補償演算法 20 4.1.1 座標轉換矩陣估測與書寫軌跡補償 21 4.2 2D提筆軌跡估測演算法 23 4.2.1 提筆斷字/換行偵測 24 4.2.2 座標轉換與重力補償 24 4.2.3 提筆軌跡估測 25 第5章 實驗結果 27 5.1 訊號前處理 27 5.2 握筆姿態補償 39 5.3 2D提筆軌跡估測 50 第6章 結論與未來展望 56 6.1 結論 56 6.2 未來展望 57 參考文獻 58

    [1] Z. Z. Bien, K.-H. Park, J.-W. Jung, and J.-H. Do, “Intention reading is essential in human-friendly interfaces for the elderly and the handicapped,” IEEE Trans. Ind. Electron., vol. 52, no. 6, pp. 1500-1505, 2005.
    [2] A. D. Cheok, Y. Qiu, K. Xu, and K. G. Kumar, “Combined wireless hardware and real-time computer vision interface for tangible mixed reality,” IEEE Trans. Ind. Electron., vol. 54, no. 4, pp. 2174-2189, 2007.
    [3] C.-S. Fahn and H. Sun, “Development of a data glove with reducing sensors based on magnetic induction,” IEEE Trans. Ind. Electron., vol. 52, no. 2, pp. 585-594, 2005.
    [4] Y. S. Kim, B. S. Soh, and S.-G. Lee, “A new wearable input device: SCURRY,” IEEE Trans. Ind. Electron., vol. 52, no. 6, pp. 1490-1499, 2005.
    [5] N. Barbour and G. Schmidt, “Inertial sensor technology trends,” IEEE Sensors Journal, vol. 1, no. 4, pp. 332-339, 2001.
    [6] C. Verplaetse, “Inertial proprioceptive devices: Self-motion-sensing toys and tools,” IBM Syst. J., vol. 35, no. 3/4, pp. 639-650, 1996.
    [7] J. Zumer, D. Reynaerts, and M. Boltezar, “An advanced nonlinear model of a low-g MEMS accelerometer for a computer pen,” Measurement, vol. 45, no. 3, pp. 459-468, 2012.
    [8] J.-S. Wang, Y.-L. Hsu, and J.-N. Liu, “Inertial-Measurement-Unit-Based pen with a trajectory reconstruction algorithm and its applications,” IEEE Trans. Ind. Electron., vol. 57, no. 10, pp. 3508-3521, 2010.
    [9] W. C. Bang, W. Chang, K. H. Kang, E. S. Choi, A. Potanin, and D. Y. Kim, “Self-contained spatial input device for wearable computers,” in Proc. IEEE Int. Conf. Wearable Comput., 2003, pp. 26-34.
    [10] E. Bernmark and C. Wiktorin, “A triaxial accelerometer for measuring arm movements,” Applied Ergonomics, vol. 33, no. 6, pp. 541-547, 2002.
    [11] Y. Tao, H. Hu, and H. Zhou, “Integration of vision and inertial sensors for 3D arm motion tracking in home-based rehabilitation,” International Journal of Robotics Research, vol. 26, no. 6, pp. 607-624, 2007.
    [12] J. Baek and B.-J. Yun, “A sequence-action recognition applying state machine for user interface,” IEEE Trans. Consumer Electronics, vol. 54, no. 2, pp. 719-726, 2008.
    [13] S. Patel, R. Hughes, T. Hester, J. Stein, M. Akay, J. G. Dy, and P. Bonato, “A novel approach to monitor rehabilitation outcomes in stroke survivors using wearable technology,” Proceedings of the IEEE, vol. 98, no. 3, pp. 450-461, 2010.
    [14] D. H. Titterton and J. L. Weston, Strapdown Inertial Navigation Technology. Peter Peregrinus Ltd, 2004.
    [15] J. C. Lötters, J. Schipper, P. H. Veltink, W. Olthius, and P. Bergveld, “Procedure for in-use calibration of triaxial accelerometers in medical applications,” Sensors and Actuators A: Physical, vol. 68, no. 1-3, pp. 221-228, 1998.
    [16] M. J. Caruso, “Application of magnetoresistive sensors in navigation systems,” Sensors and Actuators, 1997.
    [17] Y. S. Suh, “Attitude estimation by multiple-mode Kalman filters,” IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1386-1389, 2006.
    [18] R. Zhu and Z. Zhou, “A real-time articulated human motion tracking using tri-axis inertial/magnetic sensors package,” IEEE Trans. Neural Syst. Rehab. Eng., vol. 12, no. 2, pp. 295-302, 2004.
    [19] A. M. Sabatini, “Quaternion-based extended Kalman filter for determining orientation by inertial and magnetic sensing,” IEEE Trans. Biomed. Eng., vol. 53, no. 7, pp. 1346-1356, 2006.
    [20] E. H. Shin and N. El-Sheimy, “Unscented kalman filter and attitude errors of low-cost inertial navigation systems,” Navigation, vol. 54, no. 1, pp. 1-9, 2007.
    [21] S.-H. P. Won, W. W. Melek, and F. Golnaraghi, “A Kalman/particle filter-based position and orientation estimation method using a position sensor/inertial measurement unit hybrid system,” IEEE Trans. Ind. Electron., vol. 57, no. 5, pp. 1787-1798, 2010.
    [22] R. E. Kalman, “A new approach to linear filtering and prediction problems,” Journal of Basic Engineering, vol. 82, no. 1, pp. 35-45, 1960.
    [23] E. Foxlin, “Pedestrian tracking with shoe-mounted inertial sensors,” IEEE Computer Graphics and Applications, vol. 25, no. 6, pp. 38-46, 2005.
    [24] S. Godha and G. Lachapelle, “Foot mounted inertial system for pedestrian navigation,” Measurement Science & Technology, vol. 19, no. 7, pp. 075202, 2008.
    [25] S. Kawahito, “Low-power motion vector estimation using iterative search block-matching methods and high-speed non-destructive CMOS image sensor,” IEEE Trans. Circuit & Systems for Video Technology, vol. 12, no. 12, pp. 1085-1087, 2002.
    [26] S. Zhu and K. K. Ma, “A new diamond search algorithm for fast block-matching motion estimation,” IEEE Trans. Circuit & Systems for Video Technology, vol. 3, no. 2, pp. 148-157, 2000.
    [27] B. Barshan and H. F. Durrant-Whyte, “Inertial navigation systems for mobile robots,” IEEE Trans. Robotics and Automation, vol. 11, no. 3, pp. 328-342, 1995.
    [28] E. L. Renk, M. Rizzo, W. Collins, F. Lee, and D. S. Bernstein, “Calibrating a triaxial accelerometer-magnetometer: Using robotic actuation for sensor reorientation during data collection,” IEEE Control Systems Magazine, vol. 25, no. 6, pp. 86-95, 2005.
    [29] W. T. Fong, S. K. Ong, and A. Y. C. Nee, “Methods for in-field user calibration of an inertial measurement unit without external equipment,” Measurement Science & Technology, vol. 19, no. 8, pp. 1-11, 2008.
    [30] D. Roetenberg, P. J. Slycke, and P. H. Veltink, “Ambulatory position and orientation tracking fusing magnetic and inertial sensing,” IEEE Trans. Biomed. Eng., vol. 54, no. 5, pp. 883-890, 2007.
    [31] A. R. Karduna, P. W. McClure, and L. A. Michener, “Scapular kinematics: Effects of altering the Euler angle sequence of rotations,” Journal of Biomechanics, vol. 33, no. 9, pp. 1063-1068, 2000.
    [32] X. Yun and E. R. Bachmann, “Design, implementation, and experimental results of a quaternion-based Kalman filter for human body motion tracking,” IEEE Trans. Robotics, vol. 22, no. 6, pp. 1216-1227, 2006.

    無法下載圖示 校內:2022-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE