| 研究生: |
蘇玟分 Su, Wen-Fen |
|---|---|
| 論文名稱: |
電激發光高分子和電洞傳遞材料的合成、光電性質與元件應用 Electroluminescent and Hole-Transporting Materials: Synthesis, Optoelectronic Properties and Applications |
| 指導教授: |
陳雲
Chen, Yun |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 144 |
| 中文關鍵詞: | 電洞傳遞材料 、聚芴高分子 、多層元件 |
| 外文關鍵詞: | hole-transporting materials, copolyfluorenes, multilayer |
| 相關次數: | 點閱:72 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
增進有機發光二極體元件效能可分為兩個策略,第一發光層結構藉由適當的分子設計,第二使用多層的元件結構。經由化學結構的設計,可以調變有機材料的發光光色、熱性質,並提高元件性能。多層元件結構一般是在陽極與發光層和發光層與陰極之間分別導入適當的電洞傳遞與電子注入材料,來平衡電荷的傳遞與注入。在本研究,我們設計及合成新穎的電激發光材料聚芴高分子,並合成可熱交聯性的電洞傳遞材料其應用在多層元件上。
在第四、五章,我們成功設計並合成出聚芴高分子(P05~P5, PFCOA and PFCO) 包含噻吩(thiophene) (GM)、咔唑(carbazole)、噁唑(oxadiazole)與蒽(anthracene)衍生物,來增進元件效能藉由降低電子與電洞注入的能障。這些聚芴高分子利用Suzuki 聚合反應合成,皆可溶於一般有機溶劑,如甲苯、氯仿。由循環伏安法(CV)求得GM的HOMO與LUMO能階,介在聚芴高分子之間,扮演載子捕捉中心。當使用P05做為發光層應用在電激發光材料時,其最大亮度和電流效率(P05: 5230 cd/m2, 0.65 cd/A)皆較以PF(1310 cd/m2, 0.18 cd/A)為發光層較有顯著提升。此外PF/P5(w/w = 10/1)比例掺混製作做為發光層,可得到光色(0.26, 0.32)最接近白光(0.33, 0.33)。聚芴高分子PFCOA薄膜態螢光光譜最大放光為451 nm,為藍光光色主要貢獻來自anthracene基團。有效的能量轉移由芴單元至蒽單元且電荷被捕捉在蒽單元裡,導致有效率及穩定的藍色光色,可由光學及電化學性質研究證實。使用PFCOA為發光層應用在電激發光材料時,最大電流效率為5.1cd/A,CIE色度做標為(0.16, 0.11)。
在第六、七章,我們合成可濕試製程且可熱交聯的電洞傳遞材料(VTF, PFO-TPA and PFTV)並應用在多層元件。在製作多層元件裡材料具有耐溶劑性是必要的,因為在連續的濕式製程裡可以預防溶劑侵蝕前一層材料。VTF經過熱處理後對溶劑具有良好的耐溶劑性,以MEH-PPV做為發光層,利用熱交聯後的VTF做為電洞傳遞層其最大亮度和電流密度(13640 cd/m2,0.69 cd/A)較沒有電洞傳遞層的元件有明顯的提升(7810 cd/m2, 0.28 cd/A)。另外,經由熱交聯後的VTF可以用來取代傳統的電洞注入材料(PEDOT:PSS),其元件效能也有些微提升(8240 cd/m2, 0.44 cd/A)。POD-TPA和PFTV的HOMO能階介於PEDOT:PSS(-5.2 eV)和發光層聚芴高分子(PFO)(-5.70 eV)之間,形成階梯式的能階可以幫助電洞的注入及傳遞。用連續式濕試製程製作多層元件以熱交聯後PFO-TPA或PFTV當做電洞傳遞層,PFO-TPA呈現最佳的元件效能其最大的電流效率為3.16 cd/A較沒有電洞傳遞層的元件提升6倍之多。
我們的研究結果顯示改變聚芴高分子主鏈結構可以有效地減少電洞與電子注入能障。此外,導入可熱交聯的乙烯基基團於電洞傳遞材料中,可得到對溶劑有良好的耐溶劑性可方便的應用在製作多層元件。利用結構的修飾及製作多層元件皆是有效提升元件效能的好方法。
Strategies to enhance device performance of polymer light-emitting diodes (PLEDs) include appropriate molecular modification of active layer or fabrication of multilayer device. Delicate emission color tuning, enhancement of device performance, and improvement of long-term operational stability can be realized via structural modification of active polymers. Multilayer devices are generally fabricated through introduction of appropriate hole-transporting and electron-injection materials into the interfaces of anode/emitting layer and emitting layer/cathode, respectively, to balance injection and transport of charges. This thesis focuses on both chemical modification of polyfluorenes (chapters 4~5) and multilayer PLEDs fabricated by using thermally cross-linkable hole-transporting materials (chapters 6~7).
New copolyfluorenes (P05~P5, PFCOA and PFCO) consisting of 2,5-bis(2-phenyl-2-cyanovinyl)thiophene (GM), carbazole, oxadiazole and anthracene moieties were designed and synthesized to improve EL performance by reducing barrier height for hole- and electron-injection. The copolyfluorenes were synthesized by the palladium-catalyzed Suzuki coupling reaction. The HOMO and LUMO levels of GM lie between those of PF, implying that GM chromophore acts as a charge trapping site for the copolyfluorenes. The maximum brightness and current efficiency of EL device from P05 (5230 cd/m2, 0.65 cd/A) were significantly enhanced when compared with those from poly(9,9-dihexylfluorene) (PF) (1310 cd/m2, 0.18 cd/A). Furthemore, the EL device using blend of P5 and PF (w/w = 10/1) as emitting layer exhibited near-white emission with CIE coordinate being (0.26, 0.32). In film state, PFCOA showed blue emission (peak: 451 nm) attributed to anthracene chromophore. Photophysical and electrochemical investigations demonstrate that effective energy transfer from fluorene to anthracene segments and charges trapping on anthracene segments leads to efficient and stable blue emission originating from anthracence. Polymer light-emitting diodes using PFCOA as the emitting layer (ITO/PEDOT:PSS/PFCOA/Ca/Al) exhibited excellent current efficiency (5.1 cd/A) with the CIE coordinate being (0.16, 0.11).
Solution-processable and thermally cross-linkable hole-transporting materials were synthesized and applied in the fabrication of multilayer PLEDs. Solvent resistance is an essential requirement in the fabrication of multilayer PLEDs, because it can prevent solvent erosion of deposited polymer layers during subsequent spin-coating processes. The hole-transporting materials containing reactive vinyl groups (VTF, PFO-TPA and PFTV) were synthesized by the Wittig and Suzuki coupling reaction. The 2,7-bis-[4-bis(4-vinylphenyl)aminophenyl]-9,9- dihexylfluorene (VTF) was readily cross-linked via vinyl groups by heating at 180oC for 30 min to obtain homogeneous film with excellent solvent resistance. Multilayer PLEDs (ITO/PEDOT:PSS/cured-VTF/MEH-PPV/Ca/Al) were readily fabricated by spin-coating processes using cross-linked VTF as hole-transporting layer (HTL). The maximum brightness (13640 cd/m2) and current efficiency (0.69 cd/A) were superior to those without HTL (ITO/PEDOT:PSS/MEH-PPV/Ca/Al: 7810 cd/m2, 0.28 cd/A). In addition, the cured-VTF could replace conventional hole-injection layer (PEDOT:PSS) to reveal comparable performance (8240 cd/m2, 0.44 cd/A). The HOMO level of PFO-TPA and PFTV lie between those of PEDOT:PSS (-5.0~5.2 eV) and poly(9,9-dioctylfluorene) (PFO: -5.70 eV), forming a stepwise energy ladder to facilitate hole-injection. Multilayer PLED devices with cross-linked PFO-TPA or PFTV as hole-transporting layer, ITO/PEDOT:PSS/HTL/PFO/LiF/Ca/Al, were readily fabricated by successive spin-coating processes. The PFO-TPA device exhibited the best performance, its maximum luminance efficiency (3.16 cd/A) were about 6 times higher than those without PFO-TPA layer (0.50 cd/A).
Our results indicate that chemical modification of polyfluorene main chain via incorporating charge transporting moieties effectively reduces barrier heights for hole- and electron-injection. Vinyl groups attached to hole-transporting arylamine is readily cured by heating to afford solvent resistant HTL, which greatly facilitates the coating of subsequent emitting layer during the fabrication of multilayer PLEDs. Both structural modification and multilayer device fabrication are effective ways to enhance device performance.
1. Destriau, G. J. Chem. Phys. 1936, 33, 587.
2. Ohnishi, H. Ann. Rev. Mater. Res. 1989, 19, 101.
3. In Electronic display devices, Matsumoto, S., Ed. Wiley: New York, 1990; Vol. Chapter 5, p 180.
4. Pope, M.; Kallmann, H.; Magnante, P. J. Chem. Phys. 1963, 38, 3042.
5. Vincett, P. S.; Barlow, W. A.; Hann, R. A.; Roberts, G. G. Thin Solid Films 1982, 94, 171.
6. Tang, C. W.; Van Slyke, S. A. Appl. Phys. Lett. 1987, 51, 913.
7. Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burns, P. L.; Holmes, A. B. Nature 1990, 347, 539.
8. Friend, R. H.; Gymer, R. W.; Holmes, A. B.; Burroughes, J. H.; Marks, R. N.; Taliani, C.; Bradley, D. D. C.; dos Santos, D. A.; Bredas, J. L.; Logdlund, M.; Salaneck, W. R. Nature 1999, 397, 121.
9. Bernius, M. T.; Inbasekaran, M.; O'Brien, J.; Wu, W. Adv. Mater. 2000, 12, 1737.
10. Hamberg, I.; Granqvist, C. J. Appl. Phys. 1986, 60, R123.
11. Kobayashi, H.; Ishida, T.; Nakato, Y.; Tsubomura, H. J. Appl. Phys. 1991, 69, 1736.
12. Tahar, R.; Ban, T.; Ohya, Y.; Takahashi, Y. J. Appl. Phys. 1998, 83, 2631.
13. Osada, T.; Kugler, T.; Broms, P.; Salaneck, W. Synth. Met. 1998, 96, 77.
14. Kim, J.; Granstrom, M.; Friend, R. H.; Johansson, N.; Salaneck, W.; Daik, R.; Feast, W. J. Appl. Phys. 1998, 84, 6859.
15. Milliron, D.; I.Hill; Shen, C.; Kahn, A.; Schwartz, J. J. Appl. Phys. 2000, 87, 572.
16. Yang, Y.; Heeger, A. J. Appl. Phys. Lett. 1994, 64, 1245.
17. Lyon, L. Mol. Cryst. Liq. Cryst. 1989, 171, 53.
18. Bradley, D. D. C. Synth. Met. 1993, 54, 401.
19. Michaelson, H., Handbook of Chemistry and Physics. 58th ed.; CRC Press: Boca Raton, FL 1977.
20. Michaelson, H.; IBM. J. Res. Dev 1978, 22, 72.
21. Fowler, R.; Nordheim, L. Proc. R. Soc. London A 1928, 119, 173.
22. Parker, I. J. Appl. Phys. 1994, 75, 1656.
23. Rikken, G.; Braun, D.; Staring, E.; Demandt, R. Appl. Phys. Lett. 1994, 65, 219.
24. Halls, J.; Cornil, J.; Santos, D. D.; Silbey, R.; Hwang, D.; Holmes, A.; Bredas, J.; Friend, R. H. Phys. Rev. B 1999, 60, 5721.
25. Gruner, J.; Remmers, M.; Neher, D. Adv. Mater. 1997, 9, 964.
26. Soos, Z.; Galvao, D.; Etemad, S. Adv. Mater. 1994, 6, 280.
27. Lemmer, U.; Heun, S.; Mahrt, R.; Scherf, U.; Hopmeier, M.; Siegner, U.; Gobel, E.; Müllen, K.; Bässler, H. Chem. Phys. Lett. 1995, 240, 373.
28. Romero, D.; Schaer, M.; Zuppiroli, L.; Cesar, B.; Francois, B. Appl. Phys. Lett. 1995, 67, 1659.
29. Scott, J.; Kaufman, J.; Brock, P.; Dipieto, R.; Salem, J.; Goitia, J. J. Appl. Phys. 1996, 79, 2745.
30. Shirota, Y.; Kageyama, H. Chem. Rev. 2007, 107, 953.
31. Crawford, M. G.; Steranka, F. M. Encycl. of Appl. Phys. 1994, 8, 485.
32. Bruting, W.; Berleb, S.; Muckl, A. G. Org. Electron. 2001, 2, 1.
33. Skoog, D. A.; Holler, F. J.; Nieman, T. A., Principles of Instrumental Analysis. In Saunders Golden Sunburst Series, 5th ed.; 1998; Vol. chapter 15.
34. Cornil, J.; Beljonne, D.; Santos, D. A.; Bredas, J. L. Synth. Met. 1996, 76, 101.
35. Woo, H. S.; Lhost, O.; Graham, S. C.; Bre´das, J. L.; Schenk, R.; Mullen, K. Synth. Met. 1993, 59, 13.
36. Tian, B.; Zerbi, G.; Schenk, R.; Mullen, K. J. Chem. Phys. 1991, 95, 3191.
37. Lee, Y. Z.; Chen, X.; Chen, M.-C.; Chen, S.-A.; Hsu, J.-H.; Fann, W. Appl. Phys. Lett. 2001, 79, 308.
38. Peng, K.-Y.; Chen, S.-A.; Fann, W.-S.; Chen, S.-H.; Su, A.-C. J. Phys. Chem. B 2005, 109, 9368.
39. Dresselhaus, M. S.; Dresselhaus, G. Adv. Phys 1981, 30,139.
40. Conwell, E. M.; Perlstein, J.; Shaik, S. Phys. Rev. B 1996, 54, 2308.
41. Zeng, G.; Yu, W.-L.; Chua, S.-J.; Huang, W. Macromolecules 2002, 35, 6907.
42. Kafafi, Z. H., Organic Electroluminescence. US Naval Research Lab: Washington, DC, USA, 2005.
43. May, V.; Kuhn, O., Charge and Energy Transfer Dynamics in Molecular Systems. 2nd ed.; Wiley-VCH: 2003; Vol. chapter 8.
44. Chen, S.-H., The Synthesis and Optoelectronic Properties of Electroluminescent Polymers Consisting of Hole- and Electron-Transporting Segments. Doctoral Dissertation: National Cheng Kung University, 2006.
45. Rusling, J. F.; Suib, S. L. Adv. Mater. 1994, 6, 922.
46. Liu, Y.; Liu, M. S.; Jen, A. K.-Y. Acta Polym 1999, 50, 105.
47. Gosser, D. K., Cyclic Voltammetry Simulation and Analysis of Reaction Mechanism. 1st ed.; VCH: New York, 1993.
48. Braun, D.; Heeger, A. J. Appl. Phys. Lett. 1991, 58, 1982.
49. Friend, R. H.; Bradley, D. D. C.; Townsend, P. D. J.Phys. D: Appl. Phys. 1987, 20, 1367.
50. Roncali, J. Chem. Rev. 1992, 92, 711.
51. Andersson, M. R.; Selse, D.; Berggren, M.; Jarvinen, H.; Hjertberg, T.; Inganas, O.; Wennerstrom, O.; Osterholm, J. E. Macromolecules 1994, 27, 6503.
52. McCullough, R. D.; Lowe, R. D.; Jayaraman, M.; Anderson, D. L. J. Org. Chem. 1993, 58, 904.
53. McCullough, R. D.; Williams, S. P.; Tristram-Nagle, S.; Jayaraman, M.; Ewbank, P. C.; Miller, L. Synth. Met. 1995, 69, 279.
54. Chen, T. A.; Wu, X.; Rieke, R. D. J. Am. Chem. Soc. 1995, 117, 233.
55. Leclerc, M.; Diaz, F. M.; Wegner, G. Macromol. Chem. 1989, 190, 3105.
56. Mao, H.; Holdcroft, S. Macromolecules 1992, 25, 554.
57. Mao, H.; Xu, B.; Holdcroft, S. Macromolecules 1993, 26, 1163.
58. Andersson, M. R.; Berggren, M.; Inganas, O.; Gustafsson, G.; Gustafssoncarlberg, J. C.; Selse, D.; Hjertberg, T.; Wennerstrom, O. Macromolecules 1995, 28, 7525.
59. Ohmori, Y.; Uchida, M.; Muro, K.; Yoshino, K. Jpn. J. Appl. Phys. 1991, 30, 1941.
60. Bernius, M.; Inbasekaran, M.; Woo, E.; Wu, W. S.; Wujkowski, L. J. Mater. Sci. Mater. Electron. 2000, 11, 11.
61. Inbasekaran, M.; E.Woo; Wu, W. S.; Bernius, M.; Wujkowski, L. Synth. Met. 2000, 111, 397.
62. Bradley, D. D. C.; Greel, M.; Grice, A.; Tajbakhsh, A. R.; O'Brien, D. F.; Bleyer, A. Opt. Mater. 1998, 9, 1.
63. Liu, B.; Yu, W. L.; Lai, Y.; Huang, W. Chem. Mater. 2001, 13, 1984.
64. Grice, A. W.; Bradley, D. D. C.; Bernius, M. T.; Inbasekaran, M.; Wu, W. W. Appl. Phys. Lett. 1998, 73, 629.
65. Lee, J.-I.; Klaerner, G.; Miller, R. D. Chem. Mater. 1999, 11, 1083.
66. List, E. J. W.; Guentner, R.; Freitas, P. S. d.; Scherf, U. Adv. Mater. 2002, 14, 374.
67. Song, S. Y.; Jang, M. S.; Shim, H. K.; Song, I. S.; Kim, W. H. Synth. Met. 1999, 102, 1116.
68. Yang, X.; Hua, Y.; Yin, S.; Wang, Z.; Hou, Y.; Xu, Z.; Xu, X.; Peng, J.; Li, W. Synth. Met. 2000, 111-112, 455.
69. Peng, Z.; Zhang, J. Chem. Mater. 1999, 11, 1138.
70. Chen, Z.-K.; Meng, H.; Lai, Y.-H.; Huang, W. Macromolecules 1999, 32, 4351.
71. Yu, W.-L.; Meng, H.; Pei, J.; Huang, W. J. Am. Chem. Soc. 1998, 120, 11808.
72. Romero, D. B.; Schaer, M.; Leclerc, M.; Ades, D.; Siove, A.; Zuppiroli, L. Synth. Met. 1996, 80, 271.
73. Lmimouni, K.; Legrand, C.; Chapoton, A. Synth. Met. 1998, 97, 151.
74. Morin, J.-F.; Leclerc, M. Macromolecules 2001, 34, 4680.
75. Morin, J.-F.; Leclerc, M. Macromolecules 2002, 35, 8413.
76. Hu, B.; Yang, Z.; Karasz, F. E. J. Appl. Phys. 1994, 76, 2419.
77. Kido, J.; Shionoya, H.; Nagai, K. Appl. Phys. Lett. 1995, 67, 2281.
78. Zweig, A.; Maurer, A. H.; Roberts, B. G. J. Org. Chem. 1967, 32, 1322.
79. Heller, C. A.; Henry, R. A.; McLaughlin, B. A.; Bliss, D. E. J. Chem. Eng. Data 1974, 19, 214.
80. Oyama, M.; Okazaki, S. Anal. Chem. 1998, 70, 5079.
81. Boyd, T. J.; Geerts, Y.; Lee, J.-K.; Fogg, D. E.; Lavoie, G. G.; Schrock, R. R.; Rubner, M. F. Macromolecules 1997, 30, 3553.
82. Collinson, M. M.; Wightman, R. M. Anal. Chem. 1993, 65, 2576.
83. Shi, J.; Tang, C. W. Appl. Phys. Lett. 2002, 80, 3201.
84. Yu, W.-L.; Pei, J.; Huang, W.; Heeger, A. J. Adv. Mater. 2000, 12, 828.
85. Setayesh, S.; Grimsdale, A. C.; Weil, T.; Enkelmann, V.; Müllen, K.; Meghdadi, F.; List, E. J. W.; Leising, G. J. Am. Chem. Soc. 2001, 123, 946.
86. Lee, J.-H.; Hwang, D.-H. Chem. Comm. 2003, 2836.
87. Klärner, G.; Davey, M. H.; Chen, W.-D.; Scott, J. C.; Miller, R. D. Adv. Mater. 1998, 10, 993.
88. Ding, J. f.; Day, M.; Robertson, G.; Roovers, J. Macromolecules 2002, 35, 3474.
89. Ego, C.; Grimsdale, A. C.; Uckert, F.; Yu, G.; Srdanov, G.; Müllen, K. Adv. Mater. 2002, 14, 809.
90. Chen, X.; Liao, J.-L.; Liang, Y.; Ahmed, M. O.; Tseng, H.-E.; Chen, S.-A. J. Am. Chem. Soc. 2003, 125, 636.
91. Huang, C.-W.; Peng, K.-Y.; Liu, C.-Y.; Jen, T.-H.; Yang, N.-J.; Chen, S.-A. Adv. Mater. 2008, 20, 3709.
92. Wu, F.-I.; Reddy, D. S.; Shu, C.-F.; Liu, M. S.; Jen, A. K.-Y. Chem. Mater. 2003, 15, 269.
93. Shu, C.-F.; Dodda, R.; Wu, F.-I.; Liu, M. S.; Jen, A. K.-Y. Macromolecules 2003, 36, 6698.
94. Wu, F.-I.; Shih, P.-I.; Shu, C.-F.; Tung, Y.-L.; Chi, Y. Macromolecules 2005, 38, 9028.
95. Sung, H.-H.; Lin, H.-C. J. Polym. Sci. Part A: Polym. Chem. 2005, 43, 2700.
96. Huang, F.; Zhang, Y.; Liu, M. S.; Cheng, Y.-J.; Jen, A. K.-Y. Adv Funct Mater 2007, 17, 3808.
97. Pei, J.; Yu, W.-L.; Huang, W.; Heeger, A. J. Chem. Comm. 2000, 1631.
98. Lim, E.; Jung, B. J.; Shim, H. K. Macromolecules 2003, 36, 4288.
99. Khan, R. U. A.; Poplavskyy, D.; Kreouzis, T.; Bradley, D. D. C. Phys. Rev. B 2007, 75, 035215.
100. Strohriegl, P.; Grazulevicius, J. V. Adv. Mater. 2002, 14, 1439.
101. Redecker, M.; Bradley, D. D. C.; Inbasekaran, M.; Wu, W. W.; Woo, E. P. Adv. Mater. 1999, 11, 241.
102. Redecker, M.; Bradley, D. D. C.; Baldwin, K. J.; Smith, D. A.; Inbasekaran, M.; Wu, W. W.; Woo, E. P. J. Mater. Chem. 1999, 9, 2151.
103. Kim, J.-S.; Friend, R. H.; Grizzi, I.; Burroughes, J. H. Appl. Phys. Lett. 2005, 87, 023506.
104. Xia, Y.; Friend, R., H. Appl. Phys. Lett. 2006, 88, 163508.
105. Choulis, S. A.; Choong, V.-E.; Patwardhan, A.; Mathai, M. K.; So, F. Adv. Funct. Mater. 2006, 16, 1075.
106. Niu, Y.-H.; Liu, M. S.; Ka, J.-W.; Bardeker, J.; Zin, M. T.; Schofield, R.; Chi, Y.; Jen, A. K.-Y. Adv. Mater. 2007, 19, 300.
107. Liu, S.; Jiang, X.; Ma, H.; Liu, M. S.; Jen, A. K. Y. Macromolecules 2000, 33, 3514.
108. Jiang, X. Z.; Liu, S.; Liu, M. S.; Herguth, P.; Jen, A. K. Y.; Fong, H.; Sarikaya, M. Adv. Funct. Mater. 2002, 12, 745.
109. Cheng, Y.-J.; Liu, M. S.; Zhang, Y.; Niu, Y.; Huang, F.; Ka, J.-W.; Yip, H.-L.; Tian, Y.; Jen, A. K.-Y. Chem. Mater. 2008, 20, 413.
110. Paul, G. K.; Mwaura, J.; Argun, A. A.; Taranekar, P.; Reynolds, J. R. Macromolecules 2006, 39, 7789.
111. Tang, C. W.; VanSlyke, S. A.; Chen, C. H. J Appl Phys 1989, 65, 3610-3616.
112. Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.
113. Zhang, X. J.; Shetty, A. S.; Jenekhe, S. A. Macromolecules 1999, 32, 7422.
114. Grem, G.; Leditzky, G.; Ullrich, B.; Leising, G. Adv. Mater. 1992, 4, 36.
115. Pei, Q. B.; Yang, Y. J. Am. Chem. Soc. 1996, 118, 7416.
116. Roncali, J. Chem. Rev. 1997, 97, 173.
117. Rothe, C.; Hintschich, S.; Monkman, A., P; Svensson, M.; Anderson, M., R. J. Chem. Phys. 2002, 116, 10503.
118. Burrows, H. D.; de Melo, J. S.; Serpa, C.; Arnaut, L. G.; Monkman, A. P.; Hamblett, I.; Navaratnam, S. J. Chem.Phys. 2001, 115, 9601
119. Inganäs, O.; Granlund, T.; Theander, M.; Berggren, M.; Andersson, M. R.; Ruseckas, A.; Sundstrom, V. Opt. Mater. 1998, 9, 104.
120. Pei, J.; Yu, W. L.; Huang, W.; Heeger, A. J. Macromolecules 2000, 33, 2462.
121. Liu, B.; Niu, Y. H.; Yu, W. L.; Cao, Y.; Huang, W. Synth. Met. 2002, 129, 129.
122. Granlund, T.; Theander, M.; Berggren, M.; Andersson, M.; Ruzeckas, A.; Sundstrom, V.; Bjork, G.; Granstrom, M.; Inganas, O. Chem. Phy. Lett. 1998, 288, 879.
123. Hsieh, B. Y.; Chen, Y. J. Polym. Sci. Part A: Polym. Chem. 2009, 47, 833.
124. Pal, B.; Yen, W.-C.; Yang, J.-S.; Su, W.-F. Macromolecules 2007, 40, 8189.
125. Charas, A.; Morgado, J.; Martinho, J. M. G.; Alcáer, L.; Cacialli, F. Synth. Met. 2002, 127, 251.
126. Lim, E.; Jung, B.-J.; Shim, H.-K. Macromolecules 2003, 36, 4288.
127. Yen, W.-C.; Pal, B.; Yang, J.-S.; Hung, Y.-C.; Lin, S.-T.; Chao, C.-Y.; Su, W.-F. J. Polym. Sci. Part A: Polym. Chem. 2009, 47, 5044.
128. Park, M. J.; Lee, J.; Jung, I. H.; Park, J. H.; Hwang, D. H.; Shim, H. K. Macromolecules 2008, 41, 9643.
129. Jeong, E.; Kim, S. H.; Jung, I. H.; Xia, Y.; Lee, K.; Suh, H.; Shim, H.-K.; Woo, H. Y. J. Polym. Sci. Part A: Polym. Chem. 2009, 47, 3467.
130. Jung, I. H.; Jung, Y. K.; Lee, J.; Park, J.-H.; Woo, H. Y.; Lee, J.-I.; Chu, H. Y.; Shim, H.-K. J. Polym. Sci. Part A: Polym. Chem. 2008, 46, 7148.
131. Albert, I. D. L.; Marks, T. J.; Ratner, M. A. J. Am. Chem. Soc. 1997, 119, 6575.
132. Cho, N. S.; Park, J. H.; Shim, H. K. Current Applied Physics 2006, 6, 686.
133. Cho, N. S.; Hwang, D. H.; Lee, J. K.; Jung, B. J.; Shim, H. K. Macromolecules 2002, 35, 1224.
134. Kim, Y. H.; Shin, D. C.; You, H.; Kwon, S. K. Polymer 2005, 46, 7969.
135. Wang, F.; Luo, J.; Chen, J. W.; Huang, F.; Cao, Y. Polymer 2005, 46, 8422.
136. Wu, T. Y.; Chen, Y. J.Polym. Sci. Part: Polym. Chem. 2002, 40, 4570.
137. Yang, Y.; Pei, Q.; Heeger, A. J. J. Appl. Phys. 1996, 79, 934.
138. Lee, J.; Cho, N. S.; Lee, S. K.; Shim, H. K. Synth. Met. 2005, 155, 73.
139. Yu, J.-M.; Chen, Y. J. Polym Sci Part A: Polym Chem 2009, 47, 2985.
140. Liao, C.-F.; Hsieh, B.-Y.; Chen, Y. J. Polym Sci Part A: Polym Chem 2009, 47, 149.
141. Janietz, S.; Bradley, D. D. C.; Grell, M.; Giebeler, C.; Inbasekaran, M.; Woo, E. P. Appl. Phys. Lett. 1998, 73, 2453.
142. Herguch, P.; Jiang, X. Z.; Liu, M. S.; Jen, A. K. Y. Macromolecules 2002, 35, 6094.
143. Zhou, Y.; Sun, Q.; Tan, Z. a.; Zhong, H.; Yang, C.; Li, Y. J. Phys. Chem. C 2007, 111, 6862.
144. Scherf, U.; List, E. J. W. Adv. Mater. 2002, 14, 477.
145. Neher, D. Macromol. Rapid Commun. 2001, 22, 1365.
146. Redecker, M.; Bradley, D. D. C.; Inbasekaran, M.; Woo, E. P. Appl. Phys. Lett. 1998, 73, 1565.
147. Bliznyuk, V. N.; Carter, S. A.; Scott, J. C.; Klärner, G.; Miller, R. D.; Miller, D. C. Macromolecules 1999, 32, 361.
148. Herz, L. M.; Phillips, R. T. Phys. Rev. B 2000, 61, 13691.
149. Zeng, G.; Yu, W.-L.; Chua, S.-J.; Huang, W. Macromolecules 2002, 35, 6907.
150. Yuan, M.-C.; Shih, P.-I.; Chien, C.-H.; Shu, C.-F. J. Polym. Sci. Part A: Polym. Chem. 2007, 45, 2925.
151. Lee, J.; Cho, H.-J.; Jung, B.-J.; Cho, N. S.; Shim, H.-K. Macromolecules 2004, 37, 8523.
152. Hung, M.-C.; Liao, J.-L.; Chen, S.-A.; Chen, S.-H.; Su, A.-C. J. Am. Chem. Soc. 2005, 127, 14576.
153. Tseng, Y.-H.; Shih, P.-I.; Chien, C.-H.; Dixit, A. K.; Shu, C.-F.; Liu, Y.-H.; Lee, G.-H. Macromolecules 2005, 38, 10055.
154. Wong, W.-Y.; Liu, L.; Cui, D.; Leung, L. M.; Kwong, C.-F.; Lee, T.-H.; Ng, H.-F. Macromolecules 2005, 38, 4970.
155. Peng, Q.; Xu, J.; Li, M.; Zheng, W. Macromolecules 2009, 42, 5478.
156. Zhao, Q.; Liu, S.-J.; Huang, W. Macromol.Chem. Phys. 2009, 210, 1580.
157. Liu, J.; Zou, J.; Yang, W.; Wu, H.; Li, C.; Zhang, B.; Peng, J.; Cao, Y. Chem. Mater. 2008, 20, 4499.
158. Chien, C.-H.; Shih, P.-I.; Wu, F.-I.; Shu, C.-F.; Chi, Y. J. Polym. Sci. Part A: Polym. Chem. 2007, 45, 2073.
159. Wang, P.-H.; Ho, M.-S.; Yang, S.-H.; Chen, K.-B.; Hsu, C.-S. J. Polym. Sci. Part A: Polym. Chem. 2010, 48, 516.
160. Park, M.-J.; Lee, J.; Jung, I. H.; Park, J.-H.; Kong, H.; Oh, J.-Y.; Hwang, D.-H.; Shim, H. K. J. Polym. Sci. Part A: Polym. Chem. 2010, 48, 82.
161. Takagi, K.; Nakagawa, T.; Takao, H. J. Polym. Sci. Part A: Polym. Chem. 2010, 48, 91.
162. Huang, S.-T.; Liaw, D.-J.; Hsieh, L.-G.; Chang, C.-C.; Leung, M.-K.; Wang, K.-L.; Chen, W.-T.; Lee, K.-R.; Lai, J.-Y.; Chan, L.-H.; Chen, C.-T. J. Polym. Sci. Part A: Polym. Chem. 2009, 47, 6231.
163. Kim, S. O.; Jung, H. C.; Lee, M.-J.; Jun, C.; Kim, Y.-H.; Kwon, S.-K. J. Polym. Sci. Part A: Polym. Chem. 2009, 47, 5908.
164. Li, H.; Xiang, N.; Wang, L.; Zhao, B.; Shen, P.; Lu, J.; Tan, S. J. Polym. Sci. Part A: Polym. Chem. 2009, 47, 5291.
165. Chen, R.-T.; Chen, S.-H.; Hsieh, B.-Y.; Chen, Y. J. Polym. Sci. Part A: Polym. Chem. 2009, 47, 2821.
166. Kim, Y.-H.; Shin, D.-C.; Kim, S.-H.; Ko, C.-H.; Yu, H.-S.; Chae, Y.-S.; Kwon, S.-K. Adv. Mater. 2001, 13, 1690.
167. Wu, C.-H.; Chien, C.-H.; Hsu, F.-M.; Shih, P.-I.; Shu, C.-F. J. Mater. Chem. 2009, 19, 1464.
168. Chien, C.-H.; Chen, C.-K.; Hsu, F.-M.; Shu, C.-F.; Chou, P.-T.; Lai, C.-H. Adv. Funct. Mater. 2009, 19, 560.
169. Danel, K.; Huang, T.-H.; Lin, J. T.; Tao, Y.-T.; Chuen, C.-H. Chem. Mater. 2002, 14, 3860.
170. Shih, P.-I.; Chuang, C.-Y.; Chien, C.-H.; Diau, E. W.-G.; Shu, C.-F. Adv Funct Mater 2007, 17, 3141.
171. Ranger, M.; Rondeau, D.; Leclerc, M. Macromolecules 1997, 30, 7686.
172. Natera, J.; Otero, L.; Sereno, L.; Fungo, F.; Wang, N. S.; Tsai, Y.-M.; Hwu, T.-Y.; Wong, K.-T. Macromolecules 2007, 40, 4456.
173. Wong, K.-T.; Chen, Y.-M.; Lin, Y.-T.; Su, H.-C.; Wu, C.-C. Org. Lett. 2005, 7, 5361.
174. Cheon, C. H.; Joo, S. H.; Kim, K.; Jin, J. I.; Shin, H. W.; Kim, Y. R. Macromolecules 2005, 38, 6336.
175. Tokito, S.; Tanaka, H.; Noda, K.; Okada, A.; Taga, Y. Appl. Phys. Lett. 1997, 70, 1929.
176. Franco, I.; Tretiak, S. Chemical Physics Letters 2003, 372, 403.
177. Kissinger, P. T.; Heineman, W. R. J. Chem. Educ. 1983, 60, 702.
178. Stoessel, M.; Wittmann, G.; Staudigel, J.; Steuber, F.; Blassing, J.; Roth, W.; Klausmann, H.; Rogler, W.; Simmerer, J.; Winnacker, A.; Inbasekaran, M.; Woo, E. P. J. Appl. Phys. 2000, 87, 4467.
179. Brown, T. M.; Friend, R. H.; Millard, I. S.; Lacey, D. J.; Butler, T.; Burroughes, J. H.; Cacialli, F. J. App. Phys. 2003, 93, 6159.
180. Mitschke, U.; Bäuerle, P. J. Mater. Chem. 2000, 10, 1471.
181. Muller, C. D.; Falcou, A.; Reckefuss, N.; Rojahn, M.; Wiederhirn, V.; Rudati, P.; Frohne, H.; Nuyken, O.; Becker, H.; Meerholz, K. Nature 2003, 421, 829.
182. Shirota, Y. J. Mater. Chem. 2000, 10, 1.
183. Gong, X.; Wang, S.; Moses, D.; Bazan, G. C.; Heeger, A. J. Adv. Mater. 2005, 17, 2053.
184. Huang, F.; Cheng, Y.-J.; Zhang, Y.; Liu, M. S.; Jen, A. K.-Y. J. Mater. Chem. 2008, 18, 4495.
185. Morgado, J.; Friend, R. H.; Cacialli, F. Appl. Phys. Lett. 2002, 80, 2436.
186. Kulkarni, A. P.; Tonzola, C. J.; Babel, A.; Jenekhe, S. A. Chem. Mater. 2004, 16, 4556.
187. Hughes, G.; Bryce, M. R. J. Mater. Chem. 2005, 15, 94.
188. Promarak, V.; Ichikawa, M.; Sudyoadsuk, T.; Saengsuwan, S.; Keawin, T. Opt. Mater. 2007, 30, 364.
189. D'Andrade, B. W.; Forrest, S. R. Adv. Mater. 2004, 16, 1585.
190. Ma, W.; Iyer, P. K.; Gong, X.; Liu, B.; Moses, D.; Bazan, G. C.; Heeger, A. J. Adv. Mater. 2005, 17, 274.
191. Cao, Y.; Yu, G.; Zhang, C.; Menon, R.; Heeger, A. J. Synth. Met. 1997, 87, 171.
192. de Jong, M. P.; van IJzendoorn, L. J.; de Voigt, M. J. A. Appl. Phys. Lett. 2000, 77, 2255.
193. Wong, K. W.; Yip, H. L.; Luo, Y.; Wong, K. Y.; Lau, W. M.; Low, K. H.; Chow, H. F.; Gao, Z. Q.; Yeung, W. L.; Chang, C. C. Appl. Phys. Lett. 2002, 80, 2788.
194. Yan, H.; Lee, P.; Armstrong, N. R.; Graham, A.; Evmenenko, G. A.; Dutta, P.; Marks, T. J. J. Am. Chem. Soc. 2005, 127, 3172.
195. Lim, B.; Hwang, J.-T.; Kim, J. Y.; Ghim, J.; Vak, D.; Noh, Y.-Y.; Lee, S.-H.; Lee, K.; Heeger, A. J.; Kim, D.-Y. Org. Lett. 2006, 8, 4703.
196. Liu, M. S.; Niu, Y.-H.; Ka, J.-W.; Yip, H.-L.; Huang, F.; Luo, J.; Kim, T.-D.; Jen, A. K. Y. Macromolecules 2008, 41, 9570.
197. Fang, Q.; Xu, B.; Jiang, B.; Fu, H.; Zhu, W.; Jiang, X.; Zhang, Z. Synth. Met. 2005, 155, 206.
198. Lee, C.-C.; Yeh, K.-M.; Chen, Y. Polymer 2009, 50, 410.
199. Hsieh, B.-Y.; Chen, Y. J. Polym. Sci. Part A: Polym.Chem. 2009, 47, 1553.
200. Morgado, J.; Cacialli, F.; Friend, R. H.; Iqbal, R.; Yahioglu, G.; Milgrom, L. R.; Moratti, S. C.; Holmes, A. B. Chem Phys Lett 2000, 325, 552.
201. Kuwabara, Y.; Ogawa, H.; Inada, H.; Noma, N.; Shirota, Y. Adv. Mater. 1994, 6, 677.
202. Kraft, A.; Grimsdale, A. C.; Holmes, A. B. Angew. Chem. Int. Ed. 1998, 37, 402.
203. Forrest, S. R. Nature 2004, 428, 911.
204. Jiang, Z.; Zhang, W.; Yao, H.; Yang, C.; Cao, Y.; Qin, J.; Yu, G.; Liu, Y. J. Polym. Sci. Part A: Polym. Chem. 2009, 47, 3651.
205. Jin, Y.; Lee, M.; Kim, S. H.; Song, S.; Goo, Y.; Woo, H. Y.; Lee, K.; Suh, H. J. Polym. Sci. Part A: Polym. Chem. 2008, 46, 4407.
206. Shi, W.; Fan, S.; Huang, F.; Yang, W.; Liu, R.; Cao, Y. J. Mater. Chem. 2006, 16, 2387.
207. Chen, J. P.; Klaerner, G.; Lee, J. I.; Markiewicz, D.; Lee, V. Y.; Miller, R. D.; Scott, J. C. Synth. Met. 1999, 107, 129.
208. Niu, Y.-H.; Liu, M. S.; Ka, J.-W.; Jen, A. K.-Y. Appl. Phys. Lett. 2006, 88, 093505.
209. Krishnan, R. S.; Mackay, M. E.; Duxbury, P. M.; Pastor, A.; Hawker, C. J.; Van Horn, B.; Asokan, S.; Wong, M. S. Nano. Lett. 2007, 7, 484.
210. Zhang, Y.-D.; Hreha, R. D.; Jabbour, G. E.; Kippelen, B.; Peyghambarian, N.; Marder, S. R. J. Mater. Chem. 2002, 12, 1703.
211. Bacher, E.; Bayerl, M.; Rudati, P.; Reckefuss, N.; Muller, C. D.; Meerholz, K.; Nuyken, O. Macromolecules 2005, 38, 1640.
212. Akhrass, S. A.; Gal, F.; Damiron, D.; Alcouffe, P.; Hawker, C. J.; Cousin, F.; Carrot, G.; Drockenmuller, E. Soft. Matt. 2009, 5, 586.
213. Lee, S.; Lee, B.; Kim, B. J.; Park, J.; Yoo, M.; Bae, W. K.; Char, K.; Hawker, C. J.; Bang, J.; Cho, J. J. Am. Chem. Soc. 2009, 131, 2579.
214. Akhrass, S. A.; Damiron, D.; Carrot, G.; Drockenmuller, E. J. Polym. Sci. Part A: Polym. Chem. 2010, 48, 3888.
215. Zhu, K.; Iacono, S. T.; Budy, S. M.; Jin, J.; Smith, D. W. J. Polym. Sci. Part A: Polym. Chem. 2010, 48, 1887.
216. Adachi, C.; Nagai, K.; Tamoto, N. Appl. Phys. Lett. 1995, 66, 2679.
217. Belletete, M.; Beaupre, S.; Bouchard, J.; Blondin, P.; Leclerc, M.; Durocher, G. J. Phys. Chem. B 2000, 104, 9118.
218. Gautrot, J. E.; Hodge, P. Polymer 2007, 48, 7065.
219. Gautrot, J. E.; Hodge, P.; Helliwell, M.; Raftery, J.; Cupertino, D. J. Mater. Chem. 2009, 19, 4148.
220. Wenseleers, W.; Stellacci, F.; Meyer-Friedrichsen, T.; Mangel, T.; Bauer, C. A.; Pond, S. J. K.; Marder, S. R.; Perry, J. W. J. Phys. Chem. B 2002, 106, 6853.
221. Changkun, L.; Amanda, R.; Bing, Z. J. Polym. Sci. Part A: Polym. Chem. 2008, 46, 7268.
222. Lee, H. J.; Sohn, J.; Hwang, J.; Park, S. Y.; Choi, H.; Cha, M. Chem. Mater. 2004, 16, 456.
223. Qiu, Y.; Qiao, J. Thin Solid Films 2000, 372, 265.
224. Liao, J. L.; Chen, X.; Liu, C. Y.; Chen, S.-A.; Su, C. H.; Su, A. C. J. Phys. Chem. B 2007, 111, 10379.
校內:2021-12-31公開