簡易檢索 / 詳目顯示

研究生: 邱裕中
Chiou, Yu-Zung
論文名稱: 氮化鎵系列場效電晶體及光檢測器之研究
The Study of Nitride-Based Field Effect Transistors and Photodetectors
指導教授: 蘇炎坤
Su, Yan-Kuin
張守進
Chang, Shoou-Jinn
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 英文
論文頁數: 146
中文關鍵詞: 金氧半場效電晶體氮化鎵光檢測器氧化層
外文關鍵詞: Photodetectors, MOSHFET, oxide, CVD, GaN
相關次數: 點閱:81下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們的目標為製作及整合氮化鎵系列光電積體電路,因此我們對於氮化鎵系列光檢測器及場效電晶體將會有分開的討論。首先在光檢測器方面:電子槍所成長的氧化錫銦薄膜(Indium Tin Oxide)具有有高的透明度(百分之八十五以上在波長為400奈米時)及高的能障(0.95電子伏特)最適合用來當作金半金光檢測器的電極,而氮化鈦因其本身的導電度及透明度不佳(百分之六十在波長為400奈米時),並不適合用在光檢測器上,另外以磁控濺鍍機所成長的氧化錫銦薄膜因其高導電度高透明度(百分之九十五以上在波長為400奈米時)及對氮化鎵的低能障(0.46電子伏特),已被證明很有潛力可以用在發光二極體的透明電極上。在不同的氮化鎵光檢測器中,我們共製作了三種不同型態的元件,有金半金,金氧半及P-N型光檢測器,其中金氧半光檢測器有極低的漏電流,最適合應用在低功率損耗元件,其低漏電流的原因為氧化層提升了有效的能障高度。另外,也在P-MQW-N光檢測器中發現,其最大響應(Responsivity)大於理論值,這個原因可能與介面缺陷在高反偏電壓所引起的缺陷電流有關。而在光檢測器雜訊分析上,我們發現P-MQW-N光檢測器其低頻雜訊來源主要為1/f雜訊,當頻率超過10KHz時,熱雜訊(Thermal Noise)效應將會顯現出來,至於Shot Noise在對元件並沒有顯著的貢獻,原因為檢測器為反相電壓操作,電流過小的原因。在雜訊功率密度及檢測度方面,P-MQW-N光檢測器比其他兩種結構要來的優越,其主要原因為可能與電流傳導路徑平行差排而使載子受到邊界散射的機率變小所導致。在氮化鋁鎵/氮化鎵異質結構場效電晶體的製作上,我們先以直接光激氣相層機法來成長高品質二氧化矽薄膜,並探討其化學特性,物理特性及電特性。以三十二奈米厚的光激二氧化矽層來說,其漏電流為~10-7 A/cm2,崩潰電場為~6 MV/cm,對鋁鎵氮的介面缺陷密度為1.1�e1011 cm-2eV-1。在氧化層的熱穩定度方面,我們發現在不同的回火溫度下,其物理及電特性均沒有明顯的變化(厚度及折射率變化標準差<5%),最後我們把光激二氧化矽成功地應用在氮化鎵異質結構金氧半場效電晶體上,閘極漏電流將比金半場效電晶體降低四個數量級(10-4A�10-9A),最大轉移電導,汲極電流及閘極操作平台分別為68 mS/mm,572 mA/mm及8 V。即是在高溫操作氮化鎵異質結構場效電晶體的最大轉移電導及汲極電流仍然有45 mS/mm及350 mA/mm。

    The main goal of this dissertation is the achievement of nitride based Optoelectronic Integrating Circuit (OEIC). Hence, the dissertation is divided into two parts, one is the discussion of AlGaN/GaN Metal-Oxide-Semiconductor Heterojunction Field Effect Transsistors (MOSHFETs), and another is the discussion of nitride-based photodetectors. In the discussion of photodetectors, three kinds of electrodes, E-beam Indium Tin Oxide (ITO), TiN and Sputtering ITO are selected for study. The barrier heights to GaN are 0.94eV, 0.58eV and 0.46eV for E-gun ITO, TiN and Sputtering ITO, respectively. The transmittance of E-beam ITO, TiN and Sputtering ITO are 85%, 62% and 94% at wavelength of 400 nm. The best candidate for detectors is the E-gun ITO due to its high transmittance and high barrier height to GaN. However, the sputter-ITO has been proved that it’s highly potential for application in light emitter diodes (LEDs). As for the properties of nitride-based photodetectors, MIS photodetectors shows a lowest dark current due to the barrier enhancement of burrier SiO2 film. But it shows a larger noise power density and a 1/f2.5 type noise in low frequency range. Moreover, the P-MQW-N photodetectors shows a lower noise power density. The reason for this should be related to that direction of carrier transport is parallel to that of dislocation. Also the responsivity of P-MQW-N photodetectors is larger than that of theoretical calculation. Such an additional current should be originated form the trap in the interface under large band bending. On the part of AlGaN/GaN MOSHFETs, the characteristics of photo-CVD SiO2 films are first investigating by considering its physical and electrical properties. For a metal/32 nm photo-CVD SiO2/AlGaN metal insulator semiconductor capacitors, the leakage current at 4MV/cm, break down voltage and interface trap density are estimated to be ~10-7 A/cm2, 6 MV/cm and 8.4�e1011 cm-2eV-1, respectively. Before oxide breakdown, the transport mechanism of capacitors is proved to follow the Poole-Frenkel emission. Moreover, the thermal stability of as-deposited SiO2 is verified by annealing at high temperature. The deviation of thickness and refractive index is within 5% after different annealing process. Then the AlGaN/GaN MOSHFETs are fabricated by using photo-CVD SiO2 as gate oxide. The maximum transconductance (gm), maximum drain current (Id) and gate voltage swing (GVS) of AlGaN/GaN MOSHFETs are estimated to be 68 mS/mm, 572 mA/mm and 8V, respectively at room temperature. Even at 300oC, the gm and Id of device still keep at 45 mS/mm and 350 mA/mm. Such a result indicated that the AlGaN/GaN MOSHFETs with photo-CVD SiO2 films is highly potential for application in hash environment.

    Abstract (in Chinese)--------------------------------------------------------------------I Abstract (in English)------------------------------------------------------------------III Acknowledgement----------------------------------------------------------------------V Contents---------------------------------------------------------------------------------VI Figures and Table Captions----------------------------------------------------------IX Chapter 1. Introduction----------------------------------------------------------------1 1-1. Background and Motivation---------------------------------------------------1 1-2. Organization of This Dissertation--------------------------------------------3 Chapter 2. Chemical and Physical Properties of TiN and Indium Tin Oxide (ITO) Transparent Electrodes -----------------------------------------------------7 2-1 RF and DC Sputtering System -----------------------------------------------7 2-2.Deposition and Properties of Transparent Electrodes-------------------8 2.2.1 The Deposited Mechanism of Transparent Electrodes 2.2.2 The EDS Spectrum of of TiN, E-gun ITO and Sputtering-ITO Films 2.2.3 Transmittance and Resistivity of TiN, E-gun ITO and Sputtering-ITO Films 2-3 The Effective Barrier Height of TiN, E-Gun ITO and Sputtering-ITO to GaN----------------------------------------------------------------------------10 Chapter 3. Chemical, Physical and Electrical Properties of SiO2 Films by Photo Chemical Vapor Deposited System-----------------------------------------28 3-1.Direct Photo-CVD System----------------------------------------------------28 3-2.Physical, Chemical and Deposited Characteristics of Photo-CVD SiO2 on GaN---------------------------------------------------------------------------31 3.2.1 The Deposited Characteristics of Photo-CVD SiO2 Films------------31 3.2.2 The AFM Image of Photo-CVD SiO2 Surface.-------------------------31 3.2.3 The FTIR Spectrum of Photo-CVD SiO2 Films-------------------------31 3.2.4 The XPS Spectrum of Photo-CVD SiO2 Films--------------------------32 3.2.5 The AES Spectrum of Photo-CVD SiO2 Films--------------------------32 3.2.6 The Thermal Stability of Photo SiO2--------------------------------------33 3-3. The Fabrication and Electrical Characteristics of GaN MIS Capacitor with Photo-CVD SiO2--------------------------------------------34 3.3.1.The Fabrication of Al/SiO2/GaN MIS Capacitor 3.3.2.The I-V Characteristic of Al/SiO2/GaN MIS Capacitor 3.3.3.The C-V Characteristic of Al/SiO2/GaN MIS Capacitor 3-4. Summary-------------------------------------------------------------------------36 Chapter 4. AlGaN/GaN MOS-HFET Using Photo-SiO2 as Gate Oxide-----57 4-1. The Fabrication and Characterization of Al/SiO2/AlGaN MIS Capacitor with Photo-CVD SiO2.-------------------------------------------58 4.1.1.The Fabrication of Al/SiO2/AlGaN MIS Capacitor 4.1.2.The I-V Characteristic of Al/SiO2/AlGaN MIS Capacitor 4.1.3.The C-V Characteristic of Al/SiO2/AlGaN MIS Capacitor 4-2. The Fabrication and Characteristics of AlGaN/GaN MOSHFET and MESFET--------------------------------------------------------------------------60 4.2.1 The Hall Mobility of Design AlGaN/GaN High Electron Mobility MOSFET Structure 4.2.1 The Calculation of Carrier Concentration for Design AlGaN/GaN High Electron Mobility MOSFET Structure 4.2.2 The Fabrication and DC Characteristics of AlGaN/GaN High Electron Mobility MOSFET 4.2.2.1 The Fabrication, Mask Design 4.2.2.2 The Gate Leakage Characteristics 4.2.2.3 The Ohmic Characteristics of Metal/AlGaN 4.2.2.4 The Transfer Characteristics and Transconductance of MOSFET and MSFET at Elevated Temprature. 4.2.3 The AC Characteristics of AlGaN/GaN High Electron Mobility MOSFET and MSFET 4-3. Summary-------------------------------------------------------------------------66 Chapter 5. MSM, MIS and P-MQW-N Photodetectors------------------------88 5-1 The Therory of MSM Photodetectors--------------------------------------88 5-2 The Physical Concept of Noise in Device and Instrument--------------93 5-3. GaN MSM Photodetectors with Sputter-ITO, E-Gun ITO and TiN as Electrodes------------------------------------------------------------------------99 5-4. GaN MIS Photodetectors---------------------------------------------------102 5.4.1 TiN/BST/GaN UV Photodetectors 5.4.2 ITO/Photo-SiO2/GaN Photodetectors 5-5. GaN/InGaN MQW P-N Junction Photodetectors----------------------107 5-6. Summary-----------------------------------------------------------------------110 Chapter 6. Conclusion and Future Work ---------------------------------------142 6-1 Conclusion ---------------------------------------------------------------------143 6-2 The Forecast of Future Work (2DEG Photodetectors)----------------143 6-3 The Forecast of Future Work (Si Quantum Dot) ----------------------143

    Chapter 1
    [1] M. A. Khan, M. S. Shur, J. N. Kuzunia, Q. Chen, J. Burm, and W. Schaff, “Temperature activated conductance in GaN/AlGaN heterostructure field effect transistors operating at temperatures up to 300oC”, Appl. Phys. Lett., Vol.66, pp.1083 (1995)
    [2] O. Aktas, Z. F. Fan, S. N. Mmohammand, A. E. Botchkarev, and H. Morkoc, “High temperature characteristics of AlGaN/GaN modulation doped field-effect transistors”, Appl. Phys. Lett., Vol. 69, pp.3872 (1996)
    [3] H. Morkoe, S Strite, G.B. Gao, M.E. Lin, B. Sverdlov and M.Burns,” Large-band-gap SiC,Ⅲ-Ⅴ nitride, and Ⅱ-Ⅵ ZnSe-based semiconductor device technologies”, J. Appl. Phys., vol. 76,p.1363,(1994).
    [4] S. Strite, M.E. Lin and H. Morkoc, Thin Solid Films 231,197.
    [5] R.F. Davis, proc. IEEE5 (NEW YORK:IEEE, 1991), p. 702.
    [6] J. I. Pankove, E. A. Miller, and J. E. Berkeyheiser, “GaN electroluminescent diodes”, RCA Rev., vol. 32, p.383, (1971).
    [7] S. nakamura, T. Morkia and M. Senoh, “Candela-class high-brighness InGaN/AlGaN double-heterostructure blue-light-emitting diodes”, Appl. Phys. Lett., 64, p.1687 (1994).
    [8] Q. Chen, J. W. Yang, A. Osinsky, S. Gangopadhyay, B. Lim, M. Z. Anwar, M. Asif Khan, D. Kuksenkov, and H. Temkin, “Schottky barrier detectors on GaN for visible--blind ultraviolet detection”, Appl. Phys. Lett., Vol. 70, p. 2277 (1997)
    [9] Q. Chen, M. A. Khan, C. J. Sun, and J. W. Yang, Electron. Lett. 31, 1781 (1995).
    [10] M. Asif Khan, J. N. Kuznia, J. M. van Hove, N. Pan, and J. Carter, “.Observation of a two-dimensional electron gas in low pressure metalorganic chemical vapor deposited GaN-AlxGa1 - xN heterojunctions”, Appl. Phys. Lett. 60, 3027 (1992).
    [11] H. C. Casey, Jr., G. G. Fountain, R. G. Alley, B. P. Keller, and Steven P. DenBaars, “Low interface trap density for remote plasma deposited SiO2 on n-type GaN”, Appl. Phys. Lett. 68, 1850 (1996)
    [12] S. Arulkumaran, T. Egawa, H. Ishikawa, T. Jimbo, and M. Umeno, “Investigations of SiO2/n-GaN and Si3N4/n-GaN insulator--semiconductor interfaces with low interface state density “, Appl. Phys. Lett. 73, 809 (1998)
    [13] D. J. Fu, Y. H. Kwon, T. W. Kang, C. J. Park, K. H. Baek, H. Y. Cho, D. H. Shin, C. H. Lee, and K. S. Chung, “GaN metal--oxide--semiconductor structures using Ga-oxide dielectrics formed by photoelectrochemical oxidation “, Appl. Phys. Lett. 80, 446 (2002)
    [14] L. H. Peng, C. H. Liao, Y. C. Hsu, C. S. Jong, C. N. Huang, J. K. Ho, C. C. Chiu, and C. Y. Chen, “Photoenhanced wet oxidation of gallium nitride“, Appl. Phys. Lett. 76, 511 (2000)
    [15] Ching-Fa Yeh, Darren Chi-Hsiang Chen, Cheng-Yu Lu, Chung Liu, Su-Tseng Lee, Cheng-Hong Liu, and Tai-Ju Chen, “Highly Reliable Liquid-Phase-Deposited SiO2 with Nitrous Oxide Plasma Post-Treatment for Low-Temperature-Processed Polysilicon Thin Film Transistors”, Jpn. J. Appl. Phys., Part 1 41, 6119 (2002)

    Chapter 2

    [1] R.K. Watts, “Planar Magnetron Sputtering,” in J.L. Vossen and W. Kern, eds., Thin Flim Processes, Academic, New York, 1978, pp. 131-174.
    [2] C.Y. Chang and S.M. Sze, ULSI Technology, p380.
    [3] J.L. Vossen, J.J. Cuomo, Thin Film Processes, p.24, 1978.
    [4] S.I. Shah, Handbook of Thin Film Process Technology. P.A3.0:1.
    [5] S.M. Sze, VLSI Technology, p387.
    [6] Y. Z. Chiou, Y. K. Su, S. J. Chang, J. F. Chen, C. S. Chang, S. H. Liu, Y. C. Lin and C. H. Chen, “Transparent TiN Electrodes in gaN Metal-Semiconductor-Metal Ultraviolet Photodetectors”, Jpn. J. Appl. Phys. Vol. 41 pp. 3643–3645 Part 1, No. 6A, June (2002).
    [7] A. S. Baker and M. I. Ilegems, Appl, Phys. Rev B7, 743 (1993)
    [8] Hacke P, Detchprohm T, Hiramatsu K and Sawaki N, “Schottky barrier on n-type GaN grown by hydride vapor phase epitaxy”, Appl. Phys. Lett., Vol.63 pp.2676 (1993)
    [9] Y. Park, V. Choong, Y. Gao, B. H. Hsieh, C. W. Tang, Appl. Phys. Lett. Vol. 68, pp. 2699 (1996)
    [10] D.W. Kim, Y.J. Sung, J.W. Park, G.Y. Yeom, “A study of transparent indium tin oxide (ITO) contact to p-GaN “, Thin Soild Films Vol. 398-399, pp. 87-92 (2001)

    Chapter 3

    [1] H. C. Casey, Jr., G. G. Fountain, R. G. Alley, B. P. Keller, and Steven P. DenBaars, “Low interface trap density for remote plasma deposited SiO2 on n-type GaN“, Appl. Phys. Lett. 68, 1850 (1996)
    [2] S. Arulkumaran, T. Egawa, H. Ishikawa, T. Jimbo, and M. Umeno, “Investigations of SiO2/n-GaN and Si3N4/n-GaN insulator--semiconductor interfaces with low interface state density”, Appl. Phys. Lett. 73, 809 (1998)
    [3] D. J. Fu, Y. H. Kwon, T. W. Kang, C. J. Park, K. H. Baek, H. Y. Cho, D. H. Shin, C. H. Lee, and K. S. Chung, “GaN metal--oxide--semiconductor structures using Ga-oxide dielectrics formed by photoelectrochemical oxidation”, Appl. Phys. Lett. 80, 446 (2002)
    [4] L. H. Peng, C. H. Liao, Y. C. Hsu, C. S. Jong, C. N. Huang, J. K. Ho, C. C. Chiu, and C. Y. Chen, “Photoenhanced wet oxidation of gallium nitride”, Appl. Phys. Lett. 76, 511 (2000)
    [5] H. C. Casey, Jr., G. G. Fountain, R. G. Alley, B. P. Keller, and Steven P. DenBaars, “Low interface trap density for remote plasma deposited SiO2 on n-type GaN“, Appl. Phys. Lett. 68, 1850 (1996)
    [6] C. J. Huang and Y. K. Su, “Effect of substrate temperature on the properties of SiO2/InP structure prepared by photochemical vapor deposition”, Journal of Applied Physical, 67, pp.3350 (1990)
    [7] S. J. Chang, Y. K. Su, F. S. Juang, C. T. Lin, C. D. Chiang and Y. T. Cherng, IEEE J. Quantum Electron, 36, pp.583 (2000).
    [8] C. T. Lin, Y. K. Su, S. J. Chang, H. T. Huang, S. M. Chang and T. P. Sun, IEEE Photo. Technol. Lett., 9, pp.232 (1997).
    [9] C. T. Lin, Y. K. Su, H. T. Huang, S. J. Chang, G. S. Chen, T. P. Sun and J. J. Luo, IEEE Photo. Technol. Lett., 8, pp.676 (1996).
    [10] C. T. Lin, S. J. Chang, D. K. Nayak and Y. Shiraki, Jpn. J. Appl. Phys. 34, 72 (1995).
    [11] Y. Tarui, J. Hidaka and K. Aota, “Low temperature growth of silicon dioxide film by photo-chemical vapor deposition”, Jpn. J. Appl. Phys, L.827, pp.23 (1984)
    [12] M. Okuyama, Y. Toyoda and Y. Hamakawa, “Photo-induced deuterium lamp”, Jpn. J. Appl. Phys., L97, pp.23 (1984)
    [13] O. Itoh, Y. Toyoshima, H. Onuki, N. Washida and T. Ibuk, “Vacuum ultraviolet absorption cross sections of SiH4, GeH4, Si2H6 and Si3H8”, J. Chem. Phys, 85, pp. 4876 (1986)
    [14] H. Okabe, Photochemistry of small molecules, (John Wiely, New York)
    [15] Hou-Run Wu, Department of Electrical Engineering National Cheng Kung University. Master thesis. P14~P19.
    [16] E. H. Nicollian and J. R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology, New York, pp.96 (1982)
    [17] I. Akasaki, H. Amano, Y. Koide, K. Hiramatsu, and N. Sawaki, J. Cryst Growth vol. 98, pp.209 (1989)
    [18] C. J. Huang and Y. K. Su, ”Effect of substrate temperature on the properties of SiO2/InP structure prepared by photochemical vapor deposited”, Journal of Applied Physical, Vol. 67, No. 3350 (1990)
    [19] J. H. Lee, Y. H. Lee and B. Farouk, “Effect of gas composition and bias voltage on the structure and properties of a-C:H/SiO2 nanocomposite thin films prepared by plasma-enhanced chemical-vapor deposition”, J. Vac. Sci. Technol. A 14, pp.2702 (1996)
    [20] S. C. Deshmukh and E. S. Aydil, “Investigation of low temperature SiO[sub 2] plasma enhanced chemical vapor deposition”, J. Vac. Sci. Technol. B 14, pp.738 (1996)
    [21] N. F. Wang, W. J. Chang, M. P. Houng, Y. H. Wang and C. J. Huang, “Deposition of high quality silicon dioxide on Hg1 - xCdxTe by low-temperature liquid phase deposition method”, J. Vac. Sci. Technol. A 17, pp.102 (1999)
    [22] Kuan-Wei Lee, Dei-Wei Chou, Hou-Run Wu, Jian-Jnn Huang, Yeong-Her Wang, Mau-Phon Houng and Yan-Kuin Su, Electronics Letter, July vol. 38 No. 15 (2002)
    [23] B.-C. Hsu, W.-C. Hua, C.-R. Shie, K.-F. Chen, and C. W. Liu, Electrochemical and Solid-State Letters, pp.62 F9-F11 (2003)
    [24]C. J. Huang, M. P. Houng, Y. H. Wang and H. H. Wang, “Effect of a chemical modification on growth silicon dioxide films on gallium arsenide prepared by the liquid phase deposition method”, Journal of Applied Physics, Vol. 86, pp. 7151 pp.15 (1999)
    [25] P. Chen, W. Wang, S. J. Chua and Y. D. Zheng, “High-frequency capacitance-voltage measurement of plasma- enhanced chemical vapor deposition grown SiO2/n-GaN metal-insulator-semiconductor structures“, Appl. Phys. Lett. Vol. 79, pp. 3530 (2001)

    Chapter 4

    [1] Chumbes E.M., Smart J.A., Prunty T., and Shealy J.R.,“Microwave performance of AlGaN/GaN metal insulator semiconductor field effect transistors on sapphire substrates”, IEEE T-Elec. Dev., Vol. 48, pp. 416–419 (2001)
    [2]R. Therrien, G. Lucovsky and R. Davis, Appl. Surf. Sci. 166 (2000) 513
    [3] F. Ren, M. Hong, S. N. G. Chu, M. A. Marcus, M. J. Schurman, A. Baca, S. J. Pearton, and C. R. Abernathy, “Effect of temperature on Ga2O3(Gd2O3)/GaN metal-oxide-semiconductor field-effect transistors”, Appl. Phys. Lett., Vol. 73, pp. 3893 (1998)
    [4]Lay T. S., Hong M., Kwo J., Mannaerts J.P., Hung W.H., and Huang D.J., “Energy-band parameters at the GaAs– and GaN–Ga2O3(Gd2O3) interfaces”, Solid-State Electronics, Vol. 45, pp. 1679-1682 (2001)
    [5]J. W. Johnson, B. Luo, F. Ren, B. P. Gila, W. Krishnamoorthy, C. R. Abernathy, S. J. Pearton, J. I. Chyi, T. E. Nee, C. M. Lee, and C. C. Chuo, “Gd2O3/GaN metal-oxide-semiconductor field-effect transistor”, Appl. Phys. Lett., Vol. 77, pp.3230 (2000)
    [6]Khan M.A., Hu X., Sumin G., Lunev A., Yang J., Gaska R., and Shur M.S., “AlGaN/GaN metal oxide semiconductor heterostructure field effect transistor”, IEEE Elec. Dev. Lett., Vol. 21, pp. 63 –65 (2000)
    [7]Simin G., Hu X., Ilinskaya N., Zhang J., Tarakji A., Kumar A., Yang J., Asif Khan M., Gaska R., and Shur M.S., “Large periphery high-power AlGaN/GaN metal-oxide-semiconductor heterostructure field effect transistors on SiC with oxide-bridging”, IEEE Elec. Dev. Lett., Vol. 22, pp. 53-55 (2001)
    [8]Simin G., Koudymov A., Fatima H., Jianping Zhang, Jinwei Yang, Asif Khan M., Hu X., Tarakji A., Gaska R., and Shur M.S., “SiO2 / AlGaN / InGaN/GaN MOSDHFETs”, IEEE Elec. Dev. Lett., Vol. 23, pp. 458- 460 (2002)
    [9]Dei-Wei Chou, Kuan-Wei Lee, Jian-Jun Huang, Hou-Run Wu, Yeong-Her Wang, Mau-Phon Houng, Shoou-Jinn Chang, and Yan-Kuin Su, “AlGaN/GaN Metal Oxide Semiconductor Heterostructure Field- Effect Transistor Based on a Liquid Phase Deposited Oxide”, Jpn. J. Appl. Phys., Vol. 41, pp.L748-L750 (2002)
    [10]C. J. Huang and Y. K. Su, “Effect of substrate temperature on the properties of SiO2/InP structure prepared by photochemical vapor deposition”, J. Appl. Phys., Vol. 67, pp.3350 (1990)
    [11]Chang S. J., Su Y. K., Juang F. S., Lin C. T., Chang Der Chiang, and Ya-Tung Cherng, “Photo-enhanced native oxidation process for Hg0.8Cd0.2Te photoconductors”, IEEE J. Quantum Electronics, Vol. 36, pp. 583-589 (2000)
    [12]Lin C. T., Su Y. K., Chang S. J., Huang H. T., Chang S. M., and Sun T. P., “Effects of passivation and extraction surface trap density on the 1/f noise of HgCdTe photoconductive detector”, IEEE Photo. Technol. Lett., Vol. 9, pp. 232-234 (1997)
    [13]Lin C. T., Su Y. K., Huang H. T., Chang S. J., Chen G. S., Sun T. P., and Luo J. J., “Effects of passivation and extraction trap density on the 1/f noise of HgCdTe photoconductive detector”, Semiconductor Electronics, 1996. ICSE '96. Proceedings., 1996 IEEE International Conference on, pp. 168–174, 26-28 (1996)
    [14] E. H. Nicollian and J. R. Brews, MOS (Metal Oxide Semiconductor) physics and technology, chapter 8, New Jersey: Artech House, (1982).
    [15] R.K. Willardson and A,C, Beer, Semiconductors and Semimetals, Vol. 7,pp. 175-183 . Academic Press, Ner York (1971).
    [16] V. Ya. Niskov and G. A. Kuberskii, Resistance of ohmic contacts between metal and semiconductor films. Sov. Phys. Semicond. 4, 1553 (1971).
    [17] W.G. Bickley, Bessel Functions, pp. 220-255. University Press, Cambridge (1960).
    [18]S. S. Cohen and G. Sh. Gildenblat, VLSI Electronics, 13, Metal-Semiconductor Contacts and Devices, Academic Press, Orlando, FL, 1986, pp.115.
    [19] M. Ahmad and B.M. Arora, “Investigation of AuGeNi Contacts Using Rectangular and Circular Transmission Line Model, “Silid-State Electron. 35, 1441-1445, Oct. 1992.
    [20]Khan M.A., Hu X., Sumin G., Lunev A., Yang J., Gaska R., and Shur M.S., “AlGaN/GaN metal oxide semiconductor heterostructure field effect transistor”, IEEE Elec. Dev. Lett., Vol. 21, pp. 63 –65 (2000)
    [21]Dei-Wei Chou, Kuan-Wei Lee, Jian-Jun Huang, Hou-Run Wu, Yeong-Her Wang, Mau-Phon Houng, Shoou-Jinn Chang, and Yan-Kuin Su, “AlGaN/GaN Metal Oxide Semiconductor Heterostructure Field- Effect Transistor Based on a Liquid Phase Deposited Oxide”, Jpn. J. Appl. Phys., Vol. 41, pp.L748-L750 (2002)
    [22]Rotter T., Mistele D., Stemmer J., Seyboth M., Schwegler V., Paprotta S., Fedler F., Klausing H., Semchinova O. K., Aderhold J., and Graul J., “First AlGaN/GaN metal oxide semiconductor heterostructure field effect transistor based on photoanodic oxide”, Elec. Lett., Vol. 37, pp. 715-716 (2001)

    Chapter 5

    [1] E. Monroy, E. Muñoz, F. J. Sánchez, F. Calle, E. Calleja, B. Beaumout, P. Gibart, J. A. Muñoz, and F. Cussó, Semicond. Sci. Technol., Vol. 13, p. 1042 (1998)
    [2]G. Parish, S. Keller, P. Kozodoy, J. P. Ibbetson, H. Marchand, P. T. Fini, S. B. Fleischer, S. P. DenBaars, U. K. Mishra, and E. J. Tarsa, “High- performance (Al,Ga)N-based solar-blind ultraviolet p-i-n detectors on laterally epitaxially overgrown GaN”, Appl. Phys. Lett., Vol. 75, pp. 247 (1999)
    [3]E. Monroy, M. Hamilton, D. Walker, P. Kung, F. J. Sanchez, and M. Razeghi, “High-quality visible-blind AlGaN p-i-n photodiodes”, Appl. Phys. Lett., Vol. 74, pp. 1171 (1999)
    [4]A. Osinsky, S. Gangopadhyay, R. Gaska, B. Williams, M. A. Khan, D. Kuksenkov, and H. Temkin, “Low noise p-pi-n GaN ultraviolet photodetectors”, Appl. Phys. Lett., Vol. 71, pp. 2334 (1997)
    [5]Huang Z. C., Chen J. C., and Wickenden D, “Characterization of GaN using thermally stimulated current and photocurrent spectroscopies and its application to UV detectors”, J. Crystal Growth, Vol.170, pp. 362- 366 (1997)
    [6]Yan-Kuin Su, Yu-Zung Chiou, Fuh-Shyang Juang, Shoou-Jin Chang, and Jinn-Kung Sheu, “GaN and InGaN Metal-Semiconductor-Metal Photodetectors with Different Schottky Contact Metals”, Jpn. J. Appl. Phys., Part 1 40, pp. 2996 (2001)
    [7]Chen C. H., Chang S. J., Su Y. K., Chi G. C., Chi J. Y., Chang C. A., Sheu J. K., and Chen J. F., “GaN metal-semiconductor-metal ultraviolet photodetectors with transparent indium-tin-oxide Schottky contacts”, IEEE Photo. Technol. Lett., Vol. 13, pp. 848-850 (2001)
    [8]H. C. Casey, Jr., G. G. Fountain, R. G. Alley, B. P. Keller, and Steven P. DenBaars, “Low interface trap density for remote plasma deposited SiO2 on n-type GaN”, Appl. Phys. Lett., Vol. 68, pp. 1850 (1996)
    [9]Q. Chen, J. W. Yang, A. Osinsky, S. Gangopadhyay, B. Lim, M. Z. Anwar, M. Asif Khan, D. Kuksenkov, and H. Temkin, “Schottky barrier detectors on GaN for visible-blind ultraviolet detection”, Appl. Phys. Lett., Vol. 70, pp. 2277 (1997)
    [10] J. C. Carrano, T. Li, P. A. Grudowski, C. J. Eiting, R. D. Dupuis, and J. C. Campbell, “Current transport mechanisms in GaN- based metal- semiconductor - metal photodetectors”, Appl. Phys. Lett., Vol. 72, pp. 542, (1998)
    [11]F. N. Hooge, J. Kedzia, and L. K. J. Vandamme, “Boundary scattering and 1/f noise”, J. Appl. Phys., Vol. 50, pp. 8087 (1979)
    [12]D. V. Kuksenkov, H. Temkin, A. Osinsky, R. Gaska, and M. A. Khan, “Low-frequency noise and performance of GaN p-n junction photodetectors”, J. Appl. Phys., Vol. 83, pp. 2142 (1998)
    [13]S. L. Rumyantsev, N. Pala, M. S. Shur, R. Gaska, M. E. Levinshtein, V. Adivarahan, J. Yang, G. Simin, and M. Asif Khan, “Low-frequency noise in Al0.4Ga0.6N-based Schottky barrier photodetectors”, Appl. Phys. Lett., Vol. 79, pp. 866 (2001)
    [14]Ting Li, Lambert D. J. H., Wong M. M., Collins C. J., Yang B., Beck A. L., Chowdhury U., Durpuis R. D., and Campbell J.C., “Low-noise back-illuminated AlxGa1-xN-based p-i-n solar-blind ultraviolet photodetectors”, IEEE J. Quantum Elec., Vol. 37, pp. 538-545 (2001)
    [15]S. Roy Morrison, “1/f noise from levels in a linear or planar array. III. Trapped carrier fluctuations at dislocations”, J. Appl. Phys., Vol. 72, pp. 4104, (1992)
    [16]O. Katz, V. Garber, B. Meyler, G. Bahir, and J. Salzman, “Anisotropy in detectivity of GaN Schottky ultraviolet detectors: Comparing lateral and vertical geometry”, Appl. Phys. Lett., Vol. 80, pp. 347 (2002)

    Chapter 6

    [1] Y. K. Su, Y. Z. Chiou, F. S. Juang, S. J. Chang and J. K. Sheu, "GaN and InGaN metal-semiconductor-metal photodetectors with different Schottky contact metals", Jpn. J. Appl. Phys., Vol.40, No. 4B, pp. 2996-2999, April 2001.
    [2] Y. Z. Chiou, Y. K. Su, S. J. Chang, J. F. Chen, C. S. Chang, S. H. Liu, Y. C. Lin and C. H. Chen, "Transparent TiN electrodes in GaN metal-semiconductor-metal ultraviolet photodetectors", Jpn. J. Appl. Phys. Vol. 41 pp. 3643–3645 Part 1, No. 6A, June 2002.
    [3] Y. K. Su, Y. Z. Chiou, C. S. Chang, S. J. Chang, Y. C. Lin and J. F. Chen, "4H-SiC metal-semiconductor-metal ultraviolet photodetectors with Ni/ITO electrodes", Solid State Electron, Vol. 46, issue 12, pp. 2237-2240 (2002).
    [4] Y. Z. Chiou, Y. K. Su, S. J. Chang, Y. C. Lin, C. S. Chang and C. H. Chen, "InGaN/GaN MQW P-N junction photodetectors", Solid State Electron, Vol. 46, issue 12, pp. 2227-2229 (2002).
    [5] Y. K. Su, S. J. Chang, Y. Z. Chiou, T. Y. Tsai, J. Gong, Y. C. Lin, S. H. Liu, C. S. Chang and S. C. Chen, “Nitride-based miltiquantum well p-n junction photodiodes” Solid State Electron, Vol. 47, issue 5, pp. 879-883 (2003)
    [6] Y. Z. Chiou, C. S. Chang, S. J. Chang, Y. K. Su, J. R. Chiou, B. R. Huang and J. F. Chen, "Deposition of SiO2 layers on 4H-SiC by photo chemical vapor deposition", Journal of Vacuum Science and Technology B, Volume 21, Issue 1, pp. 329-331 (2003)
    [7] Shoou-Jinn Chang, Yan-Kuin Su, Yu-Zung Chiou, Jung-Ran Chiou, Bohr-Ran Huang, Chia-Sheng Chang and Jone F. Chen "Deposition of SiO2 layers on GaN by photo chemical vapor deposition", Journal of The Electrochemical Society, 150 (2) C77-C80 (2003)
    [8] Yu-Zung Chiou, Jung-Ran Chiou, Yan-Kuin Su, Shoou-Jinn Chang, Bohr-Ran Huang, Chia-Sheng Chang and Yi-Chao Lin,” The Characteristics of Different Transparent Electrodes on GaN Photodetectors”, Material Chemistry and Physics, Volume 80, Issue 1, pp.201-204 (2003)
    [9] Yu-Zung Chiou, Yan-Kuin Su, Shoou-Jinn Chang and Chin-Hsiang Chen,” GaN Metal Semiconductor Interface and Its Applications in GaN and InGaN Metal Semiconductor Metal Photodetectors”, Accepted by IEE Opto-Electronics
    [10] Yan-Kuin Su, Yu-Zung Chiou, Shoou-Jinn Chang, Jeng Gong, Chia-Sheng Chang and Sen-Hai Liu, “The Characteristics of Photo-CVD SiO2 and its application in GaN MIS Photodetector”, Journal of Electronics Materials, Vol. 32, No. 5, pp. 395 (2003)
    [11] Yu-Zung Chiou, Yan-Kuin Su, Shoou-Jinn Chang, Jeng Gong, Yi-Chao Lin, Sen-Hai Liu and Chia-Sheng Chang, “High Detectivity InGaN/GaN MQW p-n Junction Photodiodes”, IEEE T-Journal of Quantum Electronics, Vol. 39, NO. 5, MAY pp. 681-685 (2003)
    [12]C. K. Wang, Y. Z. Chiou, S. J. Chang, Y. K. Su, B. R. Huang, T. K. Lin and S. C. Chen, “AlGaN/GaN MOSHFET with Photo-CVD SiO2 Gate Oxide”, Journal of Electronics Materials, Vol. 32, No. 5, pp. 407 (2003)
    [13]C. S. Chang, S. J. Chang, Y. K. Su, Y. Z. Chiou, Y. C. Lin, Y. P. Hus, S. C. Shei, J. C. Ke, H. M. Lo, S. C. Chen and C. H. Liu, “InGaN/GaN light emitting diodes with rapid thermal annealed Ni/ITO p-contacts”, Accepted by Jpn. J. Appl. Phys.
    [14] C S Chang, S J Chang, Y K Su, Y C Lin, Y PHsu, S CShei, S C Chen, C H Liu and U H Liaw, “InGaN/GaN light-emitting diodes with ITO p-contact layers prepared by RF sputtering”, Semicond. Sci. Technol. 18 (2003) L1–L3
    [15] Y. Z. Chiou, S. J. Chang, Y. K. Su, senior member IEEE, C. K. Wang, T. K. Lin and B. R. Huang, “Photo-CVD SiO2 layers on AlGaN and AlGaN/GaN MOSHFET”, submitted to IEEE Transaction on Electron Device
    [16]15. Chun-Kai Wang, Tien-Kun Lin, Yu-Zung Chiou, Shoou-Jinn Chang, Yan-Kuin Su, Cheng-Huang Kuo, Tsun-Kai Ko and Borh-Ran Huang, “High Transconductance AlGaN/GaN MOSHFET with Photo-Chemical Vapor Deposited SiO2“, Submitted to IEE Electronics Letters.

    下載圖示 校內:2004-05-26公開
    校外:2006-05-26公開
    QR CODE