| 研究生: |
黃昱豪 Huang, Yu-Hau |
|---|---|
| 論文名稱: |
應用於非接觸電源供應器具緩振-迴授網路之順向返馳式轉換器 Forward-Flyback Converter with Snubber-feedback Network for Contactless Power Supply Application |
| 指導教授: |
林瑞禮
Lin, Ray-Lee 李祖聖 Li, Tzuu-Hseng S. |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 英文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | 非接觸電源供應器 、緩振-迴授網路 、順向返馳式轉換器 |
| 外文關鍵詞: | contactless power supply, lossless snubber, integrated transformer, output-voltage sensing circuit, forward-flyback converter |
| 相關次數: | 點閱:147 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出一應用於非接觸電源供應器具無損耗緩振電路之順向-返馳式電源轉換器。為達到減少元件數量之目的,利用磁整合元件技術,將順向返馳式電源轉換器中之變壓器與輸出電感整合成一變壓器。此外,於順向返馳式電源轉換器中加入一緩振迴授網路,其緩振機制,除了可降低開關之切換損失及電壓應力,並可回收漏感之能量,以提昇轉換器之效率;其迴授機制,可提供控制IC一穩定的電源,並可達到穩壓之效果。
最後,實做一15W無損耗緩振電路之順向-返馳式電源轉換器的雛型電路,來觀測開關電壓、輸出電壓漣波與效率,以驗證其實用性。
關鍵字:非接觸電源供應器;隔離型迴授;無損耗緩振電路;磁整合元件;順向返馳式轉換器
This thesis presents a proposed forward-flyback converter with the snubber-feedback network for the contactless power supply applications. In order to reduce the component count and volume, the output inductor and transformer are integrated with the proposed magnetic integration technology. Since the contactless power supply has the low conversion efficiency and low load regulation, the snubber-feedback network is applied to overcome these drawbacks. In the snubber-feedback network, an auxiliary winding of the integrated transformer is utilized as both the magnetic-loop voltage feedback and the lossless snubber inductor.
A prototype circuit of the 15W forward-flyback power converter is built to verify the performances, such as load regulation, voltage stress on the power switch and efficiency, comparing with conventional one.
Keyword:contactless power supply,lossless snubber,integrated transformer,output-voltage sensing circuit,forward-flyback converter
[1] G. A. Covic, J. T. Boys, and H. G. Lu, “A three-phase inductively coupled power transfer system,” in Proc. IEEE Ind. Elecront. And Appl., May. 2006, pp.1-6.
[2] S. M. Lukic, J. Cao, R. C. Bansal, F. Rodriguez, and A. Emadi, “Energy storage systems for automotive applications,” IEEE Trans. Ind. Electron., vol. 55, no. 6, pp. 2258-2267, June. 2008.
[3] Boys, J.T. Elliott, and G.A.J. Covic, “An appropriate magnetic coupling co-efficient for the design and comparison of ICPT pick-ups,” IEEE Trans. Power Electron., vol. 22, no. 1, pp. 333-335, Jan. 2007.
[4] H. Abe, H. Sakamoto, and K. Harada, “A noncontact charger using resonant converter with parallel capacitor of the secondary coil,” IEEE Trans. Ind. Appl., vol. 36, no. 2, pp. 444-451, Mar. 2000.
[5] C. C. Tsai, B. S. Chen, and C. M. Tsai, “Design of wireless transcutaneous energy transmission system for totally artificial hearts,” in Proc. IEEE APCCAS, Aug. 2000, pp. 646-649.
[6] M. Takahashi, K. Watanabe, F. Sato, and H. Matsuki, “Signal transmission system for high frequency magnetic telemetry for an artificial heart,” IEEE Trans. Magn., vol. 37, no. 4, pp. 2921-2924, Aug. 2001.
[7] Y. Jang and M. M. Jovanovic, “A contactless electrical energy transmission system for portable-telephone battery chargers,” IEEE Trans. Ind. Electron., vol. 50, no. 3, pp. 520-527, Jun. 2003.
[8] Y. Jang and M. M. Jovanovic, “A contactless electrical energy transmission system for portable-telephone battery chargers,” IEEE Trans. Ind. Electron., vol. 50, no. 3, pp. 520-527, Jun. 2003.
[9] C. Kim, D. Seo, J. You, J. Park, and B. H. Cho, “Design of a contactless charger for cellular phone,” IEEE Trans. Ind. Electron., vol. 48, no. 6, pp. 1238-1247, Dec. 2001.
[10] C. S. Wang, G. A. Covic, and O. H. Stielau, “Investigating an LCL load resonant inverter for inductive power transfer applications,” IEEE Trans. Power Electron., vol. 19, no. 4, pp. 995-1002, Jul. 2004.
[11] J. L. Villa, J. Sallán, A. Liombart, and J. F. Sanz, “Design of a high frequency Inductively Coupled Power Transfer system for electric vehicle battery charge,” Jour. of Appl. Energy, vol. 86, no. 3, pp. 355-363, Mar. 2009.
[12] Y. P. Su, X. Liu, and S. Y. R. Hui, “Mutual inductance calculation of movable planar coils on parallel surfaces,” IEEE Trans. Power Electron., vol. 24, no. 4, pp. 1115-1124, April. 2009.
[13] X. Liu and S. Y. R. Hui, “Equivalent circuit modeling of a multilayer planar winding array structure for use in a universal contactless battery charging platform,” IEEE Trans. Power Electron., vol. 22, no. 1, pp. 21-29, Jan. 2007.
[14] H. Abe, H. Sakamoto, and K. Harada, “A noncontact charger using resonant converter with parallel capacitor of the secondary coil,” IEEE Trans. Ind. Appl., vol.36, no. 2, pp. 444-451, Mar. 2000.
[15] J. Sebastian, J. Uceda, M. Rico, M. A. Perez, and F. Aldana, “A complete study of the double forward-flyback converter,” in Proc. IEEE Power Electron. Spec. Conf., April. 1988, vol. 1, pp. 142-149.
[16] G. Spiazzi and S. Buso, “Power factor preregulators based on combined buck-flyback topologies,” IEEE Trans. Power Electron., vol. 15, no. 2, pp. 197-204, Mar. 2000.
[17] H. Tacca, “Single-switch two-output flyback-forward converter operation,” IEEE Trans. Power Electron., vol. 13, no. 5, pp. 903-911, Sep. 1998.
[18] H. Tacca, “Power factor correction using merged flyback-forward converters,” IEEE Trans. Power Electron., vol. 15, no. 4, pp. 585-594, Jul. 2000.
[19] Y. Kusuhara, A. Nakayama, and T. Ninomiya, “Static and dynamic characteristics of a forward-flyback-mixed converter,” in Proc. IEEE Appl. Power Electron. Conf., Feb. 2007, pp. 768-773.
[20] Tsu-Hua Ai, Integrated AC/DC Converters with Power Factor Correction and Nondissipative Snubber, Ph.D. Dissertation, National Cheng Kung University, 2002.
[21] J Qian, “Leakage energy recovering system and method for flyback converter,” U. S. Patent 6473318B1, 2002.
[22] T. H. Ai, “A novel integrated nondissipative snubber for flyback converter, ” in Proc. IEEE-ICSS Conf., 2005, pp. 66–71.
[23] B. Yang, Y. Ren, and F. C. Lee, “Integrated magnetic for LLC resonant converter,” in Proc. IEEE Appl. Power Electron. Conf., Mar. 2002, vol. 1, pp. 346–351.
[24] A. Kats, G. Ivensky, and Ben-Yaakov, “Application of integrated magnetic in resonant converters,” in Proc. IEEE Appl. Power Electron. Conf., Feb. 1997, vol. 2, pp. 925 -930.
[25] P. Xu and F.C. Lee, “Design of High-Input Voltage Regulator Modules With A Novel Integrated Magnetics,” in Proc. IEEE Appl. Power Electron. Conf., Mar. 2001, vol. 1, pp. 262-267.
[26] Peng Xu, Qiaoqiao Wu, Pit-Leong Wong, and F.C. Lee, “A novel integrated current doubler rectifier,” in Proc. IEEE Appl. Power Electron. Conf., Aug. 2000, vol. 2, pp. 735 -740.
[27] A. Hren, J. Korelic, and M. Milanovic, “RC-RCD clamp circuit for ringing losses reduction in a flyback converter,” IEEE Trans. Analog and Digital Signal Processing, vol. 53, no. 5, pp. 369-373, May. 2006.
[28] Texas Instruments, “UC3843: Current Mode PWM Controller,” SLUS223A datasheets, April. 1997 [Revised May. 2002.]