簡易檢索 / 詳目顯示

研究生: 蕭岳芳
Hsiao, Yue-Fang
論文名稱: 邊界元素法分析三維渦輪葉片之熱傳與其自動化網格設計
Boundary Element Analysis of Heat Conduction in a Three-dimensional Turbine Blade and Its Auto-mesh Design
指導教授: 夏育群
Shiah, Yu-Chun
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2023
畢業學年度: 112
語文別: 中文
論文頁數: 111
中文關鍵詞: 近似奇異積分弱化等效處理薄層替換渦輪葉片高效建模邊界元素法
外文關鍵詞: Singular Integral Softening, Equivalent Treatment for Thin Layer Replacement, Efficient Turbine Blade Modeling, Boundary Element Method
相關次數: 點閱:43下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在工業領域中,渦輪系統通常在極高溫環境中運轉。為了確保渦輪維持良好性能,常採 用處理葉片的方法以提升其耐久性。其中,常見的手段是在葉片表面應用一層熱障塗層( Thermal Barrier Coating,簡稱 TBC),同時在葉片內部設計散孔。
    本文主要探討在進行薄層TBC邊界元素分析時可能產生的奇異性,並提出一種弱化奇異性的方法。為提高分析效率,我們引入了利用等效對流條件替代基材表面薄層 TBC部分的策略。此外,本文進行了與傳統有限元素分析的比較,以突顯新方法的優越性。為進一步提升效率,我們 提供 了一個自動化渦輪葉片網格生成程式 ,以解決渦輪葉片在設計時產生不規則形狀所帶來的 網格劃分 困難 ,以及有限分析時所需要的單元邊長比設定困難 ,並設計一個使用者介面使操作者在建模過程中更容易進行設定 。

    In the industrial sector, turbine systems commonly operate in extremely high-temperature environments. To ensure optimal performance and durability, various methods are employed to treat turbine blades, with a prevalent approach being the application of a Thermal Barrier Coating (TBC) on the blade surface, accompanied by the incorporation of cooling holes within the blade.
    This paper primarily explores potential singularities arising during the boundary element analysis of thin-layer TBC and proposes a method to mitigate these singularities. To enhance analysis efficiency, we introduce a strategy employing equivalent convective conditions to replace the surface portion with thin-layer TBC in the base material. Additionally, a comparative analysis with traditional finite element methods is conducted to emphasize the superiority of the new approach. To further boost efficiency, we provide an automated turbine blade mesh generation program, addressing challenges related to irregular shapes during blade design and difficulties in setting element aspect ratios required for finite analysis. A user interface is designed to facilitate easy configuration during the modeling process.

    摘要 I ABSTRACT II 誌謝X 目錄XI 表目錄XIII 圖目錄XIV 符號XIX 第一章 導論1 1 – 1前言 1 1 - 2 研究動機與目的4 1 - 3 文獻回顧6 1 - 4 研究過程7 第二章 理論回顧9 2 - 1 邊界積分方程式9 2 - 2 三維異向性熱傳導分析12 第三章 渦輪葉片分析效率優化及其網格化程式設計15 3 - 1 元素區域劃分16 3 - 2 近似奇異積分演算法處理22 3 - 3 渦輪葉片熱傳分析之高效邊界元素法建模25 3 - 4 等效替換渦輪葉片TBC 層建模省略方法30 3 - 5 程式設計36 3 - 6 使用者介面44 第四章 數值範例51 4 - 1 範例一、BEM異向性薄層分析範例51 4 - 2 範例二、單層熱障塗層替換範例55 4 - 3 範例三、多層熱障塗層替換範例61 4 - 4 範例四、多層熱障塗層加入熱阻替換範例67 4 - 5 範例五、NACA渦輪葉片分析範例72 4 - 6 範例六、自定義渦輪葉片分析範例82 第五章 結論與未來展望88 參考文獻89

    [1] Givoli, Dan (2004): Finite Element Modeling of Thin Layers, CMES-Comp. Model. Eng. Sci., 5(6), 497-514.
    [2] Hashin, Z. (2002): Thin Interphase/Imperfect Interface in Elasticity With Application to Coated Fiber Composites, J. Mech. Phys. Solids, 50, 2509–2537.
    [3] Marzocca, Pier.[07-03-2009]. "The NACA Airfoil Series." Clarkson University.
    [4] Letizia, Scuderi (2007): On the computation of nearly singular integrals in 3D BEM collocation, Int. J. Numer. Methods Eng., 74, 1733-1770.
    [5] Zhang, J.M.; Qin, X.Y.; Han, X.; Li, G.Y. (2009): A boundary face method for potential problems in three dimensions, Intl. J Numer Methods Eng., 80, 320–337.
    [6] Zhou, H.L.; Niu, Z.R.; Cheng, C.Z.; Guan, Z.W. (2008): Analytical integral algorithm applied to boundary layer effect and thin body effect in BEM for anisotropic potential problems, Comput Struct, 86, 1656-1671.
    [7] Shiah, Y.C.; Hematiyan, M.R., and Chen, Y.H. (2013a): Regularization of the boundary integrals in the BEM analysis of 3D potential problems, J Mech, 29(3), 385 - 401.
    [8] Shiah, Y.C.; Lee, Y.M.; Wang, C.C. (2013b): BEM Analysis of 3D Heat Conduction in 3D Thin Anisotropic Media, CMES-Comp. Model. Eng. Sci.,33(3), 229-255.
    [9] Shiah, Y.C.; Chang, Ray-Yu; Hematiya, M.R. (2021): Three-dimensional analysis of heat conduction in anisotropic composites with thin adhesive/interstitial media by the boundary element method, Eng. Anal. Boundary Elem., 123, 36–47.
    [10] Shiah, Y.C.; Tan, C.L.; Chan, Li-Ding (2015): Boundary Element Analysis of Thin Anisotropic Structures by the Self-regularization Scheme, CMES-Comp. Model. Eng. Sci., 109-110(1), 15-33.
    [11] Yeung, Woon-Shing; Hung, Fu-Sui; Mai, Van-Phung; Yang, Ruey-Jen (2022): Analytical solution of cloaking in creeping flow inside composite porous media with simultaneous heat transfer, J. Mech., 38, 390–396
    [12] Zhang, Y.M.; Gu, Y., Chen, J.T. (2010): Boundary element analysis of the thermal behaviour in thin- coated cutting tools, Eng. Anal. Bound. Elem., 34, 775-784.
    [13] Chen, X.L.; Liu, Y.J. (2005): An advanced 3-D boundary element method for characterizations of composite materials, Eng. Anal. Bound. Elem., 29, 513-523.
    [14] Qin, Xianyun; Zhang, Jianming; Xie, Guizhong; Zhou, Fenglin; Li, Guanyao (2011): A general algorithm for the numerical evaluation of nearly singular integrals on 3D boundary element, J. Comput. Anal. Appl., 235(14), 4174-4186.
    [15] Tuan, N.A.; Shiah, Y.C. (2019): BEM Study Of 3D Heat Conduction in Multiply Adjoined Anisotropic Media with Quadratic Domain Heat Generation, J. Mech., 35(2), 225-231.
    [16] Sunden, B.; Xie, G. Gas turbine blade tip heat transfer and cooling: A literature survey. Heat Transf. Eng. 2010, 31, 527–554.
    [17] Camci, C.; Arts, T. Experimental heat transfer investigation around the film- cooled leading edge of a high-pressure gas turbine rotor blade. ASME J. Eng. Power 1985, 107, 1016–1021.
    [18] Li, H.; Kassab, A.J. A coupled FVM/BEM approach to conjugate heat transfer in turbine blades. In Proceedings of the 6th Joint Thermophysics and Heat Transfer Conference, Colorado Springs, CO, USA, 20–23 June 1994.
    [19] Iacovides, H.; Raisee, M. Recent progress in the computation of flow and heat transfer in internal cooling passages of turbine blades. Int. J. Heat Fluid Flow 1999, 20, 320–328.
    [20] Vo, D.-T.; Mai, T.D.; Kim, B.; Ryu, J. Numerical study on the influence of coolant temperature, pressure, and thermal barrier coating thickness on heat transfer in high-pressure blades. Int. J. Heat Mass Transf. 2022, 189, 122715.
    [21] Wang, Y.; Wanga, C.; Youa, Y.; Cheng, W.; Dong, M.L.; Zhu, Z.; Liu, J.; Wang, L.; Zhang, X.; Wang, Y. Analysis on thermal stress of optimized functionally graded coatings during thermal shock based on finite element simulation. Mater. Today Commun. 2023, 35, 105699.
    [22] Pu, J.; Zhang, T.; Zhou, W.-l.; Wang, J.-h.; Wu, W.-l. Overall thermal performances of backward film cooling with simulated surface thermal barrier coatings at various walls. Case Stud. Therm. Eng. 2022, 32, 101876.
    [23] Shiah, Y.-C.; Huang, P.-W.; Hematiyan, M.-R.; Tuan, N.A. Efficient modeling of heat conduction across thin surface coatings on 3D anisotropic substrate. Aerospace 2022, 9, 321–336.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE