簡易檢索 / 詳目顯示

研究生: 徐啓桓
Hsu, Chi-Huan
論文名稱: 氮化鋁鎵/氮化鎵高電子遷移率場效電晶體之應力影響研究
A Study of Effect of Stress on the AlGaN/GaN High Electron Mobility Transistor
指導教授: 李文熙
Lee, Wen-Hsi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 70
中文關鍵詞: 寬能隙半導體氮化鎵高載子遷移率電晶體二維電子氣崩潰電壓氮化矽保護層張應力/壓應力逆向恢復
外文關鍵詞: wide bandgap, GaN, HEMTs, breakdown voltage, 2DEG, SiNx, tensile/compressive stress, reverse recovery
相關次數: 點閱:72下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著5G時代的來臨,氮化鎵具有能夠滿足高頻及高功率需求的潛力,然而在寬能隙半導體材料的應用上仍存在許多問題需要克服,在氮化鎵元件的設計上也有許多的影響因素需要釐清。
    本研究使用SILVACO公司之TCAD模擬軟體討論氮化鋁鎵/氮化鎵的壓電特性,透過改變氮化矽保護層之應力參數,氮化鎵高載子遷移率電晶體的二維電子氣濃度在壓應力作用下有所下降,亦討論二維電洞造成崩潰電壓下降的機制。以OrCAD PSPICE 進行電路的暫態模擬,針對氮化鎵元件的逆向恢復特性建立簡單的二極體模型,以便後續完整HEMT元件的建立以及電路設計上的應用,並透過連接不同的電阻與電容的等效電路以討論寄生特性對於逆向恢復的影響。最後製作耗盡型(D-mode)氮化鎵高載子遷移率電晶體(HEMT)以驗證模型,並在節狗上改變閘極至汲極距離,測量氮化鋁鎵/氮化鎵HEMT之電性,在LGD=5、10、15μm時的Ron分別為12.9、15.04以及16.48 mΩ·cm2,並且當LGD=10μm時,在場效板結構下因分散電場而得到最高的崩潰電壓。

    As the demand of reducing energy loss and high frequency operating increasing, Gallium Nitride is a material which has potential to be applied. However, there are still lots of issue need to be overcome. Moreover, there are many characteristics should be considered while designing the GaN device.
    GaN is a kind of piezoelectric material, so the effects of tensile/compressive stress induced by silicon nitride (SiNx) passivation need to be discussed. In order to investigate the influence of different stress-induced SiNx on GaN, SILVACO TCAD tool was used to simulate. It comes out that the compressive stress induced will increase the channel resistance because of the 2DHG generation. The mechanism of breakdown resulting from 2DHG also be discussed. In addition, OrCAD PSPICE was used to simulate the transient analysis. This study builds a simple GaN diode model, connects with different resistor or capacitor and applies in a testing circuit to analysis the reverse recovery characteristic. Finally, D-mode GaN MIS-HEMTs were made to verify the physical model. We also designed different kinds of Gate-to-Drain length in this study. The Ron of LGD=5, 10 and 15μm were 12.9, 15.04 and 16.48 mΩ·cm2 respectively. The highest breakdown voltage is at LGD=10μm because of the field plate.

    摘要 I Abstract II 致謝 III Contents IV List of Tables VI List of Figures VII Chapter 1 Introduction 1 1-1 Development of GaN 1 1-2 AlGaN/GaN heterojunction structure 3 1-3 Stress control in GaN 6 1-4 Motivation 7 Chapter 2 Theory 8 2-1 Gallium Nitride Material Property 8 2-2 High Electron Mobility Transistor 9 2-3 Normally-on Device Technique 10 2-4 Reverse Recovery 13 Chapter 3 Research and Experimental Methods 16 3-1 Experimental Procedure 16 3-2 DC and Transient Analysis 18 3-2-1 Silvaco Tcad 18 3-2-2 OrCAD PSPICE 19 3-3 GaN HEMTs Manufacture 22 3-4 Measurement Equipment 25 Chapter 4 Results and Discussion 26 4-1 Impact of Stress on AlGaN/GaN HEMT 26 4-2 Impact of Resistive and Capacitive Load on Reverse Recovery 40 4-3 Performance of D-mode HEMTs 49 4-3-1 Metal-Insulator-Semiconductor HEMTs 49 4-3-2 Comparison of the Simulation 60 Chapter 5 Conclusion and Future Work 65 5-1 Conclusion 65 5-2 Future work 65 Reference 66

    [1] L. F.Eastman and U. K.Mishra (2002), “The Toughest Transistor Yet [GaN Transistors],” IEEE Spectrum, 39(5), 28–33.
    [2] A. Lidow, J. Strydom, M. de Rooij et al. (2014), GaN Transistors for Efficient Power Conversion (2nd ed.), United Kingdom : John Wiley & Sons Ltd.
    [3] F. Sacconi, A. Di Carlo, P. Lugli, and H. Morkoç (2001), “Spontaneous and Piezoelectric Polarization Effects on the Output Characteristics of AlGaN/GaN Heterojunction Modulation Doped FETs,” IEEE Transactions on Electron Devices, 48(3), 450–457.
    [4] O. Ambacher, J. Smart, J. R. Shealy et al. (1999), “Two-Dimensional Electron Gases Induced by Spontaneous and Piezoelectric Polarization Charges in N- And Ga-face AIGaN/GaN Heterostructures,” Journal of Applied Physics, 85(6), 3222–3233.
    [5] ETH Zürich, Department of Information Technology and Electrical Engineering. Gallium Nitride (GaN) HEMTs. Retrieved April 4, 2019, from the website: http://www.mwe.ee.ethz.ch/research/HEMT/GaNHEMTs.html.
    [6] R. Quay (2008), “III-N Materials, and the State-of-The-Art of Devices and Circuits,” in Gallium Nitride Electronics (pp. 3–90), Heidelberg: Springer.
    [7] S. Helkman, S. Keller, Y. Wu et al. (2003), “Polarization Effects in AlGaN/GaN and GaN/AlGaN/GaN Heterostructures,” Journal of Applied Physics, 93(12), 10114–10118.
    [8] K. D.Mackenzie, D. J.Johnson, M. W.Devre et al. (2005), “Stress Control of Si-Based PECVD Dielectrics,” Electrochemical Society, 148–159.
    [9] Zenji Yatabe, Yujin Hori1, Wan-Cheng Ma et al. (2014), “Characterization of Electronic States at Insulator/(Al)GaN Interfaces for Improved Insulated Gate and Surface Passivation Structures of GaN-based Transistors,” Japanese Journal of Applied Physics, 53(10).
    [10] W. L. Liu, Y. L. Chen, A. A. Balandin, and K. L. Wang (2006), “Capacitance–Voltage Spectroscopy of Trapping States in GaN/AlGaN Heterostructure Field-Effect Transistors,” Journal of Nanoelectronics and Optoelectronics, 1, 258–263.
    [11] C. Sungchan, J. Junggeun, K. Kyoungtae et al. (2002), “Effects of a SiNx Capping Layer on the Properties of GaN Treated by Rapid Thermal Annealing,” Journal of the Korean Physical Society, 41(6), 1008–1012.
    [12] Jeon, C. M., &Lee, J. L. (2005), “Effects of Tensile Stress Induced by Silicon Nitride Passivation on Electrical Characteristics of AlGaN/GaN Heterostructure Field-Effect Transistors,” Applied Physics Letters, 86(17), 1–3.
    [13] H. Ibach and H. Lüth (2010), Solid-State Physics: An Introduction to Principles of Materials Science, Berlin: Springer-Verlag.
    [14] J. D. Hwang and G. H. Yang (2007), “Activation of Mg-doped P-GaN by Using Two-Step Annealing,” Applied Surface Science, 253(10), 4694-4697.
    [15] F. Hemmi, C. Thomas, Y. Lai et al. (2017), “Neutral Beam Process in AlGaN/GaN HEMTs: Impact on Current Collapse,” Solid-State Electronics, 137, 1–5.
    [16] F. Hemmi, C. Thomas, Y. Lai et al. (2017), “Neutral Beam Etching for Device Isolation in AlGaN/GaN HEMTs,” Physica Status Solidi (A), 214(3), 1600617.
    [17] T. Ohba, W. Yang, S. Tan et al. (2017), “Atomic Layer Etching of GaN and AlGaN Using Directional Plasma-Enhanced Approach,” Japanese Journal of Applied Physics, 56(6), 06HB06.
    [18] Transporm (2014), AN0004: Designing Hard-switched Bridges with GaN.
    [19] E. A. Jones, F. Wang, and B. Ozpineci (2014), “Application-Based Review of GaN HFETs,” 2nd IEEE Workshop on Wide Bandgap Power Devices and Applications, WiPDA 2014, 24–29.
    [20] Donald A. Neamen (2012), Semiconductor Physics and Devices : Basic Principles (4th ed.), New York : McGraw-Hill.
    [21] J. Schönberger and G. Feix (2008), “Modelling Turn-Off Losses in Power Diodes,” 11th IEEE Workshop on Control and Modeling for Power Electronics, February. pp. 1-6.
    [22] Chia-Ta Chang, Shih-Kuang Hsiao, E. Y. Chang et al. (2009), “Changes of Electrical Characteristics for AlGaN/GaN HEMTs Under Uniaxial Tensile Strain,” IEEE Electron Device Letters, 30(3), 213–215.
    [23] W. Lu, V. Kumar, R. Schwindt et al. (2002), “A Comparative Study of Surface Passivation on AlGaN / GaN HEMTs,” Solid-State Electronics, 46(9), 1441–1444.
    [24] P. Temple-Boyer, C. Rossi, E. Saint-Etienne, and E. Scheid, “Residual Stress in Low Pressure Chemical Vapor Deposition SiNx Films Deposited from Silane and Ammonia,” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 16(4), 2003–2007.
    [25] Silvaco Inc. (2016), Atlas User’s Manual.
    [26] R. Reiner, P. Waltereit, B Weiss et al. (2015) “Integrated reverse-diodes for GaN-HEMT structures,” 2015 IEEE 27th International Symposium on Power Semiconductor Devices & IC's, June , 45–48.
    [27] International Rectifier (2014). Application Note AN-1194 Using MOSFET Spice Models for Analyzing.
    [28] ROHM SEMICONDUCTOR (2017), “Body Diode Characteristics,” Retrieved May 27, 2019, from the website:
    [29] R. H. Caverly, N. V Drozdovski, M. J. Quinn et al. (2001), “Gallium Nitride-Based Microwave and RF Control Devices,” Microwave Journal, 44, 1–17.
    [30] O. Veher, N. Sleptsuk, J. Toompuu et al. (2017), “The Dependence of Reverse Recovery Time on Barrier Capacitance and Series-On Resistance in Schottky Diodes,” WIT Transactions on Engineering Sciences, 116, 15–22.
    [31] M.Sun, H. S.Lee, B.Lu et al. (2012), “Comparative Breakdown Study of Mesa- and Ion-implantation-isolated AlGaN/GaN High-electron-mobility Transistors on Si Substrate,” Applied Physics Express, 5(7).
    [32] A. Firrincieli, B. DeJaeger, S. You et al. (2014), “Au-free Low Temperature Ohmic Contacts for AlGaN/GaN Power Devices on 200mm Si Substrates,” Japanese Journal of Applied Physics, 53(4), 914–915.
    [33] D. F.Wang et al., “Low-resistance Ti/Al/Ti/Au Multilayer Ohmic Contact to n-GaN,” Journal of Applied Physics, 89(11) , 6214–6217.
    [34] M. Hua, Y. Lu, S. Liu et al. (2016), “Compatibility of AlN/SiNx Passivation with LPCVD-SiNx Gate Dielectric in GaN-based MIS-HEMT,” IEEE Electron Device Letters, 37(3), 265–268.
    [35] Z. Zhang, G. Yu, X. Zhang et al. (2016), “Studies on High-Voltage GaN-on-Si MIS-HEMTs Using LPCVD Si3N4 as Gate Dielectric and Passivation Layer,” IEEE Transactions on Electron Devices, 63(2), 731–738.
    [36] A. Nakajima, Y. Sumida, M. H. Dhyani et al. (2010), “High Density Two-Dimensional Hole Gas Induced by Negative Polarization at GaN/AlGaN Heterointerface,” Applied Physics Express, 3(12), 121004
    [37] P. Liu, K. Kakushima, H. Iwai et al. (2013), “Characterization of Two-Dimensional Hole Gas at GaN/AlGaN Heterointerface,” The 1st IEEE Workshop on Wide Bandgap Power Devices and Applications, October, 155–158.
    [38] S. Banáš, J. Divín, J. Dobeš, and V. Paňko (2018), “Accurate Diode Behavioral Model with Reverse Recovery,” Solid-State Electronics, 139, 31–38.
    [39] M. S.Shur, A. D.Bykhovski, R.Gaska et al. (2000), “Accumulation Hole Layer in p-GaN/AlGaN Heterostructures,” Applied Physics Letters, 76(21), 3061–3063.
    [40] G. Meneghesso, M. Meneghini, and E. Zanoni (2014), “Breakdown Mechanisms in AlGaN/GaN HEMTs: An Overview,” Japanese Journal of Applied Physics, 53(10).
    [41] P. Wilson (2017). Active Components. In The Circuit Designer’s Companion (pp. 159–208).
    [42] Y. Irokawa, B. Luo, Jihyun Kim (2003), “Current–Voltage and Reverse Recovery Characteristics of Bulk GaN p-i-n Rectifiers,” Applied Physics Letters, 83(11), 2271–2273.
    [43] L. Efthymiou, G. C. G. Longobardi, F. Udrea (2016), “Zero Reverse Recovery in SiC and GaN Schottky Diodes: A Comparison,” Proceedings of the International Symposium on Power Semiconductor Devices and ICs, July, 71–74.
    [44] A. Gan, H. Devices, J. M. Tirado et al. (2007) “Trapping Effects in the Transient Response of AlGaN/GaN HEMT Devices,” Science, 54(3), 410–417.
    [45] H.Xing, Y.Dora, A.Chini et al. (2004), “High Breakdown Voltage AlGaN-GaN HEMTs Achieved by Multiple Field Plates,” IEEE Electron Device Letters, 25(4), 161–163.
    [45] H.Xing, Y.Dora, A.Chini et al. (2004), “High Breakdown Voltage AlGaN-GaN HEMTs Achieved by Multiple Field Plates,” IEEE Electron Device Letters, 25(4), 161–163.

    無法下載圖示 校內:2024-08-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE