| 研究生: |
吳明勳 Wu, Ming-Hsun |
|---|---|
| 論文名稱: |
運用萃智理論提升晶圓電鍍銅柱高度之製程能力指標 Applying TRIZ Theory to Enhance the Process Capability Index of Wafer Cu Stud Plating Height |
| 指導教授: |
邵揮洲
Shaw, Heiu-Jou |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程管理碩士在職專班 Engineering Management Graduate Program(on-the-job class) |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 英文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 扇出晶圓級封裝 、製程能力指標 、要因分析 、萃智理論 、矛盾矩陣 |
| 外文關鍵詞: | Fan-out Wafer-level Packaging, Process Capability Index, Cause-effect Analysis, TRIZ, Contradiction Matrix |
| 相關次數: | 點閱:51 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
「晶圓級封裝(Wafer-level packaging, WLP)」是一種半導體封裝技術,相較於傳統封裝工藝更為微小、薄型化且成本更低。在眾多的晶圓級封裝技術當中,「全模塑型扇出晶圓級封裝技術(Fully Molded Fan-Out Wafer Level Packaging)」已成為高端晶片封裝的主流技術,具有諸多優勢,例如較強的封裝強度、較佳的良率、更長久的可靠性、以及更小的翹曲現象。
然而,由於COVID-19大流行引起晶圓供需失衡,晶片短缺已成為全球性問題。為了減少晶圓和晶片的報廢數量,提高製程能力指標並增加製程良率至關重要。相比於8英寸晶圓,在12英寸晶圓上電鍍銅柱高度的製程能力指標無法達到同等基線,導致良率低於量產要求。
因此,本研究採用因果分析法來找出影響12吋晶圓表面電鍍銅柱高度的主要因素,再使用TRIZ理論的矛盾矩陣法,獲得改善和惡化的關鍵因素,並得出啟發式解決方案,以有效地提升電鍍銅柱高度的製程能力指標(超過1.67),並實現製程良率的提高(無銅柱高度超過規格),以達成大量生產目標。
Wafer-level packaging (WLP) is a semiconductor packaging technology that offers advantages over traditional packaging processes, including smaller size, greater thinness, and lower cost. Fully molded fan-out wafer-level packaging (FOWLP), among various types of WLP, has emerged as the mainstream high-end chip packaging technology due to its stronger package strength, improved yield, longer reliability, and smaller warpage.
However, the global shortage of chips resulting from the COVID-19 pandemic has created an imbalance between wafer supply and demand. To minimize wafer and chip wastage, it is crucial to increase process capability index and assembly yield. The 12-inch wafer fails to achieve the same process capability baseline for plated Cu stud height as the 8-inch wafer, leading to lower yield rates than mass production requirements.
Thus, this study employs cause-effect analysis to determine the primary fac-tors affecting Cu stud plating height through electroplating on the surface of 12-inch wafers. The TRIZ contradiction matrix method is utilized to identify key fac-tors for both improvement and deterioration and obtain innovative invention solu-tions to improve the process capability index of the plated Cu stud height (exceed-ing 1.67) and increase process yield (no Cu stud height exceeding specification) to achieve mass production targets.
[1] 許明哲、詹印豐、顏錫鴻 (2009)。半導體晶圓級電化學沉積系統之設計考量。技術學刊,十五卷,第三期。
[2] 張建斐、翁睿廷、蔡易璋、陳盈谷、廖英傑、林松茂、侯欽德 (2014)。QC七大手法及問題分析與解決:企業持續改善的基本課題(初版)。中國生產力中心。
[3] 宋明弘 (2017)。TRIZ輕鬆學(二版)。鼎茂出版股份有限公司社。
[4] Rogers, B., Scanlan, C., & Olson, T. (2013, November). Implementation of a ful-ly molded fan-out packaging technology. In International Wafer-Level Packaging Conference (IWLPC) (pp. S10-P1).
[5] Frieske, B., & Stieler, S. (2022). The “Semiconductor Crisis” as a Result of the COVID-19 Pandemic and Impacts on the Automotive Industry and Its Supply Chains. World Electric Vehicle Journal, 13(10), 189.
[6] Malyshev, E., Landau, U., & Chivilikhin, S. (2003, November). Modeling the deposit thickness distribution in copper electroplating of semiconductor wafer interconnects. American Institute of Chemical Engineers Annual Meeting.
[7] Pyzdek, T., & Keller, P. A. (2003). Quality engineering handbook. CRC Press.
[8] Yang, L., Radisic, A., Deconinck, J., & Vereecken, P. M. (2013, October). Copper plating uniformity on resistive substrate with segmented anode. In Electrochem-ical Society (ECS) Meeting.
[9] Steven, T., M., Evan, E., P., Brian, P., B., Jonathan, D., R., Thomas, A., P., & Har-old, D., P. (2004). United States Patent No. 6,773,571 B1. Washington, DC: U.S. Patent and Trademark Office.
[10] Christopher, M., S. (2014). United States Patent No. 8,922,021 B2. Washington, DC: U.S. Patent and Trademark Office.
[11] Shih, M. K., Chen, R., Chen, P. B., Lee, Y. C., Chen, K. Y., Hu, I., Chen, T. Y., Tsai, L., Chen, E., Tsai, E., Tarng, D., & Hung, C. P. (2018, May). Comparative Study on Mechanical and Thermal Performance of eWLB, M-Series™ and Fan-Out Chip Last Packages. In 2018 IEEE 68th Electronic Components and Tech-nology Conference (ECTC) (pp. 1676-1682). IEEE.
[12] Anderson, R., Chilukuri, R., Tee, T. Y., Koo, C. P., Ng, H. S., Hsieh, R. L., & Gil-leo, K. (2010). 14 Advances in WLCSP Technologies for Growing Market Needs.
[13] Brunnbauer, M., Meyer, T., Ofner, G., Mueller, K., & Hagen, R. (2008, Novem-ber). Embedded wafer level ball grid array (eWLB). In 2008 33rd IEEE/CPMT International Electronics Manufacturing Technology Conference (IEMT) (pp. 1-6). IEEE.
[14] Daum, W., Burdick, W. E., & Fillion, R. A. (1993). Overlay high-density inter-connect: A chips-first multichip module technology. Computer, 26(4), 23-29.
[15] Christopher, M., S., Timothy, L., O. (2016). United States Patent No. 2016/0086825 A1. Washington, DC: U.S. Patent and Trademark Office.
[16] Kim, T. H., Lee, S. J., Kim, D. W., Bae, J. W., Kim, K. N., Kim, Y. M., & Yeom, G. Y. (2018). Residual stress control of Cu film deposited using a pulsed direct current magnetron sputtering. Thin Solid Films, 660, 601-605.
[17] Ishikawa, K., & Loftus, J. H. (1990). Introduction to quality control (Vol. 98). Tokyo: 3A Corporation.
[18] Donnici, G., Frizziero, L., Francia, D., Liverani, A., & Caligiana, G. (2018). TRIZ method for innovation applied to an hoverboard. Cogent Engineering, 5(1), p7.
[19] AMMT GmbH. (2014). Wafer holder — Single EP with electrical frontside con-tacts. Product Information Sheet from AMMT.
[20] Thomas, I. L., & Allcock, G. M. (1984). Determining the confidence level for a classification. Photogrammetric Engineering and Remote Sensing, 50(10), 1491-1496.
[21] Aboelmaged, M. G. (2010). Six Sigma quality: a structured review and implica-tions for future research. International Journal of Quality & Reliability Man-agement, 27(3), 268-317.