簡易檢索 / 詳目顯示

研究生: 吳明勳
Wu, Ming-Hsun
論文名稱: 運用萃智理論提升晶圓電鍍銅柱高度之製程能力指標
Applying TRIZ Theory to Enhance the Process Capability Index of Wafer Cu Stud Plating Height
指導教授: 邵揮洲
Shaw, Heiu-Jou
學位類別: 碩士
Master
系所名稱: 工學院 - 工程管理碩士在職專班
Engineering Management Graduate Program(on-the-job class)
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 64
中文關鍵詞: 扇出晶圓級封裝製程能力指標要因分析萃智理論矛盾矩陣
外文關鍵詞: Fan-out Wafer-level Packaging, Process Capability Index, Cause-effect Analysis, TRIZ, Contradiction Matrix
相關次數: 點閱:51下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 「晶圓級封裝(Wafer-level packaging, WLP)」是一種半導體封裝技術,相較於傳統封裝工藝更為微小、薄型化且成本更低。在眾多的晶圓級封裝技術當中,「全模塑型扇出晶圓級封裝技術(Fully Molded Fan-Out Wafer Level Packaging)」已成為高端晶片封裝的主流技術,具有諸多優勢,例如較強的封裝強度、較佳的良率、更長久的可靠性、以及更小的翹曲現象。
    然而,由於COVID-19大流行引起晶圓供需失衡,晶片短缺已成為全球性問題。為了減少晶圓和晶片的報廢數量,提高製程能力指標並增加製程良率至關重要。相比於8英寸晶圓,在12英寸晶圓上電鍍銅柱高度的製程能力指標無法達到同等基線,導致良率低於量產要求。
    因此,本研究採用因果分析法來找出影響12吋晶圓表面電鍍銅柱高度的主要因素,再使用TRIZ理論的矛盾矩陣法,獲得改善和惡化的關鍵因素,並得出啟發式解決方案,以有效地提升電鍍銅柱高度的製程能力指標(超過1.67),並實現製程良率的提高(無銅柱高度超過規格),以達成大量生產目標。

    Wafer-level packaging (WLP) is a semiconductor packaging technology that offers advantages over traditional packaging processes, including smaller size, greater thinness, and lower cost. Fully molded fan-out wafer-level packaging (FOWLP), among various types of WLP, has emerged as the mainstream high-end chip packaging technology due to its stronger package strength, improved yield, longer reliability, and smaller warpage.
    However, the global shortage of chips resulting from the COVID-19 pandemic has created an imbalance between wafer supply and demand. To minimize wafer and chip wastage, it is crucial to increase process capability index and assembly yield. The 12-inch wafer fails to achieve the same process capability baseline for plated Cu stud height as the 8-inch wafer, leading to lower yield rates than mass production requirements.
    Thus, this study employs cause-effect analysis to determine the primary fac-tors affecting Cu stud plating height through electroplating on the surface of 12-inch wafers. The TRIZ contradiction matrix method is utilized to identify key fac-tors for both improvement and deterioration and obtain innovative invention solu-tions to improve the process capability index of the plated Cu stud height (exceed-ing 1.67) and increase process yield (no Cu stud height exceeding specification) to achieve mass production targets.

    摘要 i Abstract ii Acknowledgements iii List of Abbreviation iv Table of Contents v List of Figures vii List of Tables 1 List of Equation 2 1 Introduction 3 1.1 Background and Context 3 1.2 Scope and Objectives 5 1.3 Overview of Dissertation 5 2 Fully Molded Fan-Out Wafer Level Packaging 8 2.1 Structure of Fully Molded Fan-out Wafer-level Packaging 8 2.2 The Assembly Process of Fully Molded Fan-Out Wafer Level Packaging 9 2.3 Study on Electroplating Cu Stud Process 11 3 Methodology 16 3.1 Explore Methods of Cause-effect Analysis & Fishbone Diagram 16 3.2 Origin of TRIZ Theory 18 3.3 TRIZ Contradiction Matrix 19 3.4 39 Parameters and 40 Principles 20 4 Result and Analysis 24 4.1 Description of the Problem 24 4.2 Cause-effect Analysis of the Problem 26 4.3 Innovative Methodology in the TRIZ 32 4.3.1 Technological Contradictions 32 4.3.2 Innovation Solution Application 34 4.4 Innovative Problem-solving Method by TRIZ 34 4.4.1 Innovative Invention Principle No. 35 - Parameter Changes 35 4.4.2 Innovative Invention Principle No. 14 – Curvature 38 4.5 Effect Verification and Result Summary 39 5 Conclusions and Recommendations 41 5.1 Conclusions 41 5.2 Recommendations of Future Study 42 References 43 Appendix 1 – TRIZ 39 Parameters 45 Appendix 2 – 39x39 Contradiction Matrix 52 Appendix 3 – 40 Innovative Invention Principle 58

    [1] 許明哲、詹印豐、顏錫鴻 (2009)。半導體晶圓級電化學沉積系統之設計考量。技術學刊,十五卷,第三期。
    [2] 張建斐、翁睿廷、蔡易璋、陳盈谷、廖英傑、林松茂、侯欽德 (2014)。QC七大手法及問題分析與解決:企業持續改善的基本課題(初版)。中國生產力中心。
    [3] 宋明弘 (2017)。TRIZ輕鬆學(二版)。鼎茂出版股份有限公司社。
    [4] Rogers, B., Scanlan, C., & Olson, T. (2013, November). Implementation of a ful-ly molded fan-out packaging technology. In International Wafer-Level Packaging Conference (IWLPC) (pp. S10-P1).
    [5] Frieske, B., & Stieler, S. (2022). The “Semiconductor Crisis” as a Result of the COVID-19 Pandemic and Impacts on the Automotive Industry and Its Supply Chains. World Electric Vehicle Journal, 13(10), 189.
    [6] Malyshev, E., Landau, U., & Chivilikhin, S. (2003, November). Modeling the deposit thickness distribution in copper electroplating of semiconductor wafer interconnects. American Institute of Chemical Engineers Annual Meeting.
    [7] Pyzdek, T., & Keller, P. A. (2003). Quality engineering handbook. CRC Press.
    [8] Yang, L., Radisic, A., Deconinck, J., & Vereecken, P. M. (2013, October). Copper plating uniformity on resistive substrate with segmented anode. In Electrochem-ical Society (ECS) Meeting.
    [9] Steven, T., M., Evan, E., P., Brian, P., B., Jonathan, D., R., Thomas, A., P., & Har-old, D., P. (2004). United States Patent No. 6,773,571 B1. Washington, DC: U.S. Patent and Trademark Office.
    [10] Christopher, M., S. (2014). United States Patent No. 8,922,021 B2. Washington, DC: U.S. Patent and Trademark Office.
    [11] Shih, M. K., Chen, R., Chen, P. B., Lee, Y. C., Chen, K. Y., Hu, I., Chen, T. Y., Tsai, L., Chen, E., Tsai, E., Tarng, D., & Hung, C. P. (2018, May). Comparative Study on Mechanical and Thermal Performance of eWLB, M-Series™ and Fan-Out Chip Last Packages. In 2018 IEEE 68th Electronic Components and Tech-nology Conference (ECTC) (pp. 1676-1682). IEEE.
    [12] Anderson, R., Chilukuri, R., Tee, T. Y., Koo, C. P., Ng, H. S., Hsieh, R. L., & Gil-leo, K. (2010). 14 Advances in WLCSP Technologies for Growing Market Needs.
    [13] Brunnbauer, M., Meyer, T., Ofner, G., Mueller, K., & Hagen, R. (2008, Novem-ber). Embedded wafer level ball grid array (eWLB). In 2008 33rd IEEE/CPMT International Electronics Manufacturing Technology Conference (IEMT) (pp. 1-6). IEEE.
    [14] Daum, W., Burdick, W. E., & Fillion, R. A. (1993). Overlay high-density inter-connect: A chips-first multichip module technology. Computer, 26(4), 23-29.
    [15] Christopher, M., S., Timothy, L., O. (2016). United States Patent No. 2016/0086825 A1. Washington, DC: U.S. Patent and Trademark Office.
    [16] Kim, T. H., Lee, S. J., Kim, D. W., Bae, J. W., Kim, K. N., Kim, Y. M., & Yeom, G. Y. (2018). Residual stress control of Cu film deposited using a pulsed direct current magnetron sputtering. Thin Solid Films, 660, 601-605.
    [17] Ishikawa, K., & Loftus, J. H. (1990). Introduction to quality control (Vol. 98). Tokyo: 3A Corporation.
    [18] Donnici, G., Frizziero, L., Francia, D., Liverani, A., & Caligiana, G. (2018). TRIZ method for innovation applied to an hoverboard. Cogent Engineering, 5(1), p7.
    [19] AMMT GmbH. (2014). Wafer holder — Single EP with electrical frontside con-tacts. Product Information Sheet from AMMT.
    [20] Thomas, I. L., & Allcock, G. M. (1984). Determining the confidence level for a classification. Photogrammetric Engineering and Remote Sensing, 50(10), 1491-1496.
    [21] Aboelmaged, M. G. (2010). Six Sigma quality: a structured review and implica-tions for future research. International Journal of Quality & Reliability Man-agement, 27(3), 268-317.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE