| 研究生: |
王俊凱 Wang, Chun-Kai |
|---|---|
| 論文名稱: |
混合田口粒子群演算法之研究及其於模糊控制器之設計 Study of Hybrid Taguchi-Particle Swarm Optimization and Its Application to Fuzzy Controller Design |
| 指導教授: |
李祖聖
Li, Tzuu-Hseng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 粒子群最佳化演算法 、田口方法 、交配運算子 、模糊控制器 |
| 外文關鍵詞: | PSO, Taguchi method, Crossover operator, Fuzzy controller |
| 相關次數: | 點閱:115 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出一個以混合田口粒子群交配演算法 (HTPC:Hybrid-Taguchi PSO with Crossover Algorithm)之模糊控制器設計。由於粒子群演算法容易陷入區域最佳解以及有收斂過早的趨勢,因此本論文利用田口方法並搭配交配運算子運用於粒子群演算法中,避免粒子過早收歛以及強化粒子跳脫局部最佳解的能力。首先,本論文將所提出的HTPC演算法對23種測試函數(包括單峰和多峰函數)進行性能檢測。從模擬測試結果顯示HTPC不僅能解決多峰函數問題在搜尋最佳解過程中容易陷入區域最佳解的問題,對於單峰函數問題亦能找到全域最佳解或接近全域最佳解的結果。同時將HTPC與其他演算法做比較,其結果顯示HTPC具有較佳的尋優能力以及較快的收歛速度。最後,運用HTPC於非線性系統的模糊控制器之最佳化設計,將控制器內欲調整之參數予以最佳化,經由模擬結果證明此方法之有效性與可行性。
In this study, a Hybrid Taguchi Particle swarm optimization with Crossover (HTPC) is proposed for designing a fuzzy controller. Particle swarm optimization (PSO) easily falls into the trap of a locally optimal solution and has premature convergence shortcomings. We use the Taguchi method with crossover operator to assist in PSO to avoid the premature convergence and escape the local optimum. The proposed HTPC is effectively applied to solving 23 benchmark problems of global numerical optimization (which have unimodal and multimodal functions). The simulation experiments show that the proposed HTPC not only can solve problems that easily fall into the trap of locally optimal solutions during optimization for multimodal optimization problems, but also can find the optimal solutions or close to the optimal solutions for unimodal optimization problems. Simultaneously, HTPC is compared with other algorithms. The results show that HTPC has a superior performance in convergence rate than other algorithms. Finally, we use HTPC to tune the scaling factors of the fuzzy controller for nonlinear systems. The simulation results demonstrate the validity and feasibility of the proposed methodology.
[1]R. C. Eberhart and J. Kennedy, “A new optimizer using particle swarm theory,” Proceedings of the Sixth International Symposium on Micro Machine and Human Science, pp.39 – 43, 1995.
[2]J.-T. Tsai, T.-K. Liu, and J.-H. Chou, “Hybrid taguchi-genetic algorithm for global numerical optimization,” IEEE Trans. Evol. Comput., vol. 8,no. 4, pp. 365–377, Aug. 2004.
[3]E. Rashedi, H. Nezamabadi-pour, and S. Saryazdi, “GSA: A Gravitational Search Algorithm,” Information Sciences, vol. 179, no. 13, (2009), pp. 2232–2248.
[4]Y.-W. Leung and Y. Wang, “An orthogonal genetic algorithm with quantization for global numerical optimization,” IEEE Trans. Evol. Comput., vol. 5, no. 1, pp. 41–53, Feb. 2001.
[5]Y. Wang and C. Dang, “An evolutionary algorithm for global optimization based on level-set evolution and Latin squares,” IEEE Trans. Evol. Comput., vol. 11, no. 5, pp. 579–595, Oct. 2007
[6]M. Clerc and J. Kennedy. “The Particle Swarm-Explosion, Stability, and Convergence in a Multidimensional Complex Space,” IEEE Transactions on Evolutionary Computation, vol. 6, pages 58-73, 2002.
[7]Y. Shi and R.C. Everhart. “Empirical Study of Particle Swarm Optimization,” in Proceedings of the IEEE International Conference on Evolutionary Computation, pages 1945-1950, 1999.
[8]Y. Shi and R.C. Everhart. “Parameter Selection in Particle Swarm Optimization,” in Proceedings of the Seventh Annual Conference on Evolutionary Programming, pages 591-600, 1998.
[9]Y. Shi and R.C. Everhart. “A modified particle swarm optimizer,” in Proceedings of the IEEE International Conference on Evolutionary Computation, pages 69-73, 1998.
[10]Stacey A, Jancic M, Grundy I. “Particle Swarm Optimization with Mutation,” in Proceedings of the IEEE Congress on Evolutionary Computation 2003; p.1425-1430.
[11]C. H. Chou, “Genetic algorithm-based optimal fuzzy controller design in the linguistic space,” IEEE Trans. Fuzzy Syst., vol. 14, no. 3, pp. 372–385, Jun. 2006.
[12]F. Hoffmann, “Evolutionary algorithms for fuzzy control system design,” Proc. IEEE, vol. 89, no.9, pp.1318-1333, Sep, 2001.
[13]J. H. Holland, “Adaptive in Natural and Artificial Systems,” Ann Arbor, MI Uniu. Mich. Press, 1975.
[14]J.T. Tsai, T.K. Liu, W.H. Ho, and J.H. Chou, “An improved genetic algorithm for job-shop scheduling problems using Taguchi-based crossover,” International Journal of Advanced Manufacturing Technology 38 (2008) 987-994.
[15]I. Ciornei and E. Kyriakides, “Hybrid ant colony-genetic algorithm (GAAPI) for global continuous optimization,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 42, no. 1, pp. 234-245, Feb. 2012.
[16]T. H. S Li and M. Y. Shieh, “Switching-type fuzzy sliding mode control of a cart-pole system,” Mechatronics, vol. 10, no. 1-2, pp. 91-109, Feb. 2000.
[17]H. O. Wang, K. Tanaka, and M. F. Griffin, “An approach to fuzzy control of nonlinear systems: stability and design issues,” IEEE Trans. Fuzzy System, vol.4, no. 1, pp. 14-23, 1996.
[18]H. R. Li and H. B. Gatland, “Conventional Fuzzy Controller and Its Enhancement,” IEEE Trans. Systems, Man, and Cybernetics-Part B, vol.26, no.5, pp.791-797, Oct. 1996.
[19]C. C. Lee, “Fuzzy Logic in Control Systems: Fuzzy Logic Controller-Part 1, Part 2,” IEEE Transaction on Systems, Man and Cybernetics, vol.20, no.2, pp.404-434, 1990.
[20]C. Dou and J.A Macedo, “Complex System Inference-Control and Fuzzy Logic Modeling,” International Journal Control, Vol.65, No.5 pp. 373-378, 1995.
[21]K. D. Sharma, A. Chatterjee and A. Rakshit, “A PSO-Lyapunov Hybrid Stable Adaptive Fuzzy Tracking Control Approach for Vision Based Robot Navigation“, IEEE Trans. on Instrumentation & Measurement, vol.61, no.7, pp. 1908-1914, July. 2012.
[22]K. S. Senthilkumar and K. K. Bharadwaj, “Hybrid genetic-fuzzy approach to autonomous mobile robot,” in Proc. IEEE Int. Conf. TePRA, Woburn, MA, pp.29-34, Nov. 2009.
[23]S. F. Chen, T. Mei, M. Z. Luo, and X. Q. Yang,“Identification of nonlinear system based on a new hybrid gradient-based PSO algorithm,” Proceedings of International Conference on Information Acquisition, pp.265-268, 2007.
[24]W. C. Weng, F. Yang, and A. Z. Elsherbeni, “Linear antenna array synthesis using Taguchi’s Method: a novel optimization technique in electromagnetics,” Journal of IEEE Transactions on Antennas and Propagation, vol. 55, no. 3, pp.723-730, 2007.
[25]W. F. Leong and G. G. Yen, “PSO-based multiobjective optimization with dynamic population size and adaptive local archives,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 38, no. 5, pp.1270-1293, Oct. 2008.
[26]M. Clerc and J. Kennedy, “The particle swarm—Explosion, stability, and convergence in a multidimentional complex space,” IEEE Trans. Evol. Comput, vol. 6, no.1, pp. 58-73, Feb. 2002.
[27]F. Grimaccia, M. Mussetta, and R. E. Zich, “Genetical swarm optimization: self-adaptive hybrid evolutionary algorithm for electromagnetics,” IEEE Trans. Antennas Propag., vol. 55, no. 3, pp. 781-785, Mar. 2007.
[28]S. H. Ling, H. H. C. Iu, F. H. F. Leung, and K. Y. Chan, “Improved hybrid PSO-based wavelet neural network for modeling the development of fluid dispensing for electronic packaging,” IEEE Trans. Ind. Electron., vol. 55, no. 9, pp. 3447-3460, Sep. 2008.
[29]G. Taguchi, S. Chowdhury, and S. Taguchi, Robust Engineering, McGraw-Hill, New York, 2000.
[30]H. A. Nguyen, H. Guo, and K. S. Low, "Real-time estimation of sensor node's position using particle swarm optimization with log-barrier constraint," IEEE Trans. Instrum. Meas., vol. 60, no. 11, pp.3619-2628 2011.
[31]C.-C. Hwang, L.-Y. Lyu, C.-T. Liu, and P.-L. Li, "Optimal design of an SPM motor using genetic algorithms and Taguchi method," IEEE Trans. Magn., vol.44, pp. 4325-4328 2008.
[32]Y.-H. Liu and Y.-F. Luo “Search for an optimal rapid-charging pattern for Li-ion batteries using the Taguchi approach", IEEE Trans. Ind. Electron,” vol.57, no.12, pp. 3963-3971 2010.
[33]T. H. S. Li, S. H. Tsai, and M. Y. Hsiao, “Robust fuzzy control for a class of time-delay fuzzy bilinear systems with an additive disturbance,” International Journal of Nonlinear Sciences and Numerical Simulation, vol.10, no.3, pp.315–322, Mar. 2009.
[34]J. J. Liang, A. K. Qin, P. N. Suganthan, and S. Baskar, “Comprehensive learning particle swarm optimizer for global optimization of multimodal functions,” IEEE Trans. Evol. Comput., vol. 10, no. 3, pp. 281–295, Jun. 2006.
[35]K. E. Parsopoulos and M. N. Vrahatis, “On the computation of all global minimizers through particle swarm optimization,” IEEE Trans. Evol. Comput., vol. 8, no. 3, pp. 211–224, Jun. 2004.
[36]J.T. Tsai, J.H. Chou, and T.K. Liu, “Tuning the structure and parameters of a neural network by using hybrid Taguchi-genetic algorithm,” IEEE Trans. Neural Netw., vol. 17, no. 1, pp.69-80, Jan. 2006.
[37]M. M. Ali and P. Kaelo, “Improved particle swarm algorithms for global optimization,” Appl. Math. Comput., vol. 196, no. 2, pp.578-593, 2008.
[38]B. Liu, L. Wang, and Y. H. Jin, “An effective PSO-based memetic algorithm for flow shop scheduling,” IEEE Trans. On Syst., Man and Cybern., vol. 37, no. 1, pp.18-27, Feb. 2007.
[39]Y. X. Wang, Z. D. Zhao, and R. Ren, “Hybrid particle swarm optimizer with tabu strategy for global numerical optimization,” in Proc. Of the 2007 Congr. on Evol. Comput., pp. 2310-2316, Singapore, 2007.
[40]V. V. Kumar, M. K. Pandey, M. K. Tiwari, and D. Ben-Arieh, “Simultaneous optimization of parts and operations sequences in SSMS: a chaos embedded Taguchi particle swarm optimization approach,” Journal of Intelligent Manufacturing, vol. 21, no. 4, pp. 335-353, 2010.
[41]M. T. Su, C. T. Lin, S. C. Hsu, D. L. Li, C. J. Lin, and C. H. Chen, “Nonlinear system control using functional-link-based neuro-fuzzy network model embedded with modified particle swarm optimizer,” International Journal of Fuzzy Systems, vol. 14, no. 1, pp. 97-109, 2012.
[42]S. C. Tong, H. X. Li, and W. Wang, “Observer-based adaptive fuzzy control for SISO nonlinear systems,” Fuzzy Sets and Systems, vol. 148, no. 3, pp. 355-376, 2004.
校內:2018-09-05公開