| 研究生: |
曾竑嘉 Tseng, Huang-Chia |
|---|---|
| 論文名稱: |
具各種鰭片形狀之板鰭管式熱交換器的自然對流熱傳特性的數值與實驗研究 Numerical and experimental study on natural convection heat transfer characteristics of plate finned tube heat exchangers with various fin shapes |
| 指導教授: |
陳寒濤
Chen, Han-Taw |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 107 |
| 中文關鍵詞: | 逆算法 、實驗方法 、數值模擬 、自然對流 、板鰭式熱交換器 |
| 外文關鍵詞: | Inverse scheme, Numerical simulation, Plate-fin and tube heat exchangers, Heat transfer characteristics |
| 相關次數: | 點閱:118 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文以逆向方法及三維商業CFD套裝軟體配合實驗數據來求得具不同鰭片形狀、鰭片大小及鰭片間距之熱交換器在煙囪內於自然對流中熱傳及流體流動特性的影響。由於鰭片上的熱傳係數分布是不均勻的,因此本文中將鰭片劃分為數個子區域,並假設每一區域中的熱傳係數為常數。概先以有限差分法及最小平方法之逆向方法配合實驗量測溫度來求得鰭片上的熱傳係數。之後本文又以CFD套裝軟體配合所求知逆向結果與實驗量測溫度來求得空氣速度分布、空氣溫度分佈、鰭片表片溫度分布及鰭片上平均熱傳係數。本文結果顯示流動模式及網格點對所求結果的影響不容忽視。以CFD軟體所求的之較正確結果應在所得到之鰭片表面溫度及鰭片上熱傳係數須甚接近實驗數據及逆向結果之情況下。
結果顯示在模擬中選擇Zero-equation的紊流模式所求得結果較符合實驗量測溫度與逆向方法結果。在自然對流中隨著鰭片尺寸增加,鰭片平均熱傳係數會降低。隨著鰭片間距增加,鰭片熱傳係數增加,當間距到達某一距離時,鰭熱傳係數將維持在一定值。此外H型鰭片在鰭片與管徑比(H/d0)為5及 3時,相較於方形鰭片及環狀鰭片有較好的平均熱傳係數。
This study uses three-dimensional computational fluid dynamics (CFD) commercial package software along with inverse method and experimental data to investigate the natural convection heat transfer and fluid flow characteristics of the single-tube vertical finned tube heat exchanger. The effect of fin shape (square fin, annular fin, H-type fin), fin spacing (5, 10, 15, 20mm) and fin to tube ratio (3, 5, 10) on heat transfer coefficient are examined. Since the heat transfer coefficient on the fin is not uniform, the fin is divided into several sub-regions and the heat transfer coefficient in each sub-regions is assumed to be a constant. Later, the inverse method applies finite difference method in conjunction with the least-squares scheme and the experimental data to estimate the heat transfer coefficient on the fins. Fin temperature distribution, air temperature field and velocity distributions of air between the two fins are determined by using the CFD software with various flow model. More accurate results can be obtained, if the heat transfer coefficient obtained is close to the inverse result and experimental data. How to choose the appropriate flow model and the effect of grid points are also investigated. The results obtained using the zero-equation turbulence flow model is more suitable for this problem than laminar and RNG k-ε turbulence model. H-type fin has better heat transfer coefficient than square and annular fin when fin to tube ratio are 3 and 5.
[1] E.M. Sparrow, P.A. Bahrami. Experiments in natural convection heat transfer on the fins of a finned horizontal tube. Int. J. Heat Mass Transfer (1980) vol. 23, pp. 1555-1560.
[2] N.Kayansayan, Thermal characteristics of fin-and-tube heat exchanger cooled by natural convection, Exp. Therm. Fluid Sci. 7 (1993) p.177-188.
[3] N. Kayansayan, R. Karabacak, Nature convection heat transfer coefficient for a horizontal cylinder with vertically attached circular fins, Heat Recover System & CHP (1992) vol. 12, No. 6, 457-468.
[4] E. Hahne, D. Zhu, Natural convection heat transfer on finned tubes in air, Int. J. Heat Mass Transfer 37 (1994) 55-63.
[5] S. Yildiz, H. Yüncü, An experimental investigation on performance of annular fins in a horizontal cylinder in free convection heat transfer, Heat Mass Transfer 40 (2004) 239-251.
[6] W. Elenbaas, Heat dissipation of parallel plates by free convection, Physical, Vol. 9 (1942), pp. 1-28.
[7] T. Tsubouchi, M. Masuda, Natural Convection Heat Transfer From Horizontal Cylinders With Circular Fins, Proc. 6th Int. Heat Transfer Conf., Elsevier Publishing Amsterdam, paper NC 1.10, 1970.
[8] JA. Edwards, J.B. Chaddock, An experimental investigation of the radiation heat transfer and free convection heat transfer from a cylinder disk extended surface, ASHARE. Trans. 69 (1963) 313-322.
[9] H.T. Chen, J.C. Chou. Investigation of natural-convection heat transfer coefficient on a vertical square fin of finned-tube heat exchanger, Int. j. Heat Mass Transfer 49 (2006) 3034-3044.
[10] H.T. Chen, W.L. Hus. Estimation of heat transfer coefficient on the fin of annular-finned tube heat exchangers in natural convection for various fin spacings, Int. j. Heat Mass Transfer 49 (2007) 1750-1761.
[11] H.T. Chen, J.C. Chou. Estimation of heat-transfer characteristics on a vertical annular circular finned-tube heat exchanger in forced convection, Int. J. Heat and Mass Transfer 51 (2008) 1920-1932.
[12] H.T. Chen, J.C. Chou, H.C. Wang, Estimation of heat transfer coefficient on the vertical finned-tube heat exchanger for various air speeds and fin spacing, Int. J. Heat Mass Transfer 50 (2007) 45-57.
[13] H.T. Chen, J.P. Song, Y.T. Wang, Prediction of heat transfer coefficient on fin inside one-tube plate finned-tube heat exchangers, Int. J. Heat and Mass Transfer 48 (2005) 2697-2707
[14] H.T. Chen, J.R. Lai, Study of heat-transfer characteristics on the fin of two-row plate finned-tube heat exchangers, Int. J. Heat Mass Transfer 55 (2012) 4088-4095.
[15] A. Dorgan, S. Akkus, S. Baskaya, Numerical analysis of natural convection heat transfer from annular fins on a horizontal cylinder. J. Therm. Sci. Technol, 32 (2) (2012) 31-41.
[16] A. Kumar, J.B. Joshi, A.K. Nayak, P.K. Vijayan, 3D CFD simulations of air cooled condenser-I: Natural convection over a circular cylinder, Int. J. Heat Mass Transfer 78 (2014) 1265-1283.
[17] A. Kumar, J.B. Joshi, A.K. Nayak, P.K. Vijayan, 3D CFD simulations of air cooled condenser-II: Natural draft around a single finned tube kept in a small chimney, Int. J. Heat Mass Transfer 92 (2016) 507–522.
[18] J.R. Senapati, S.K. Dash, S. Roy, Numerical investigation of natural convection heat transfer over annular finned horizontal cylinder, Int. J. Heat Mass Transfer 96 (2016) 330-345.
[19] J.R. Senapati, S.K. Dash, S. Roy, 3D numerical study of effect of eccentricity on heat transfer characteristics over horizontal cylinder fitted with annular fins, Int. J. Thermal Sciences 108 (2016) 28-39.
[20] M. Yaghoubi, M. Mahdavi, An investigation of natural convection heat transfer from a horizontal cooled finned tube, Exp. Heat Transfer 26 (2013) 343-359.
[21] H.T. Chen, Y.S. Lin, P.C. Chen, J.R. Chang, Numerical and experimental study of natural convection heat transfer characteristics for vertical plate fin and tube heat exchangers with various tube diameters, Int. J. Heat Mass Transfer 100 (2016) 320-331.
[22] H.T. Chen, Y.J. Chiu, C.S. Liu, J.R. Chang, Numerical and experimental study of natural convection heat transfer characteristics for vertical annular finned tube heat exchanger, Int. J. Heat Mass Transfer 109 (2017) 378-392.
[23] H.T. Chen, Y.J. Chiu, H.C. Tseng, J.R. Chang, Effect of domain boundary set on natural convection heat transfer characteristics for vertical annular finned tube heat exchanger, Int. J. Heat Mass Transfer 109 (2017) 668-682.
[24] A. Bejan, Heat Transfer, John Wiley & Sons, Inc., pp.53-62, 1993.
[25] E.C. Rosman, P. Carajilescov, F.E.M. Saboya, “Performance of One and Two-row Tube and Plate Fin Heat Exchangers”, ASME J. Heat Transfer, Vol.106, pp.627-632, 1984.
[26] H. Ay, J.Y. Jang, J.N. Yeh, “Local heat transfer measurements of plate finned-tube heat exchangers by infrared thermography”, Int. J. Heat Mass Transfer, Vol.45, pp.4069-4078, 2002.
[27] S.M. Saboya, F.E.M. Saboya, “Experiments on elliptic sections in one- and two-row arrangements of plate fin and tube heat exchangers”, Experimental Thermal and Fluid Science, Vol.24, pp.67-75, 2001.
[28] J.Y. Jang, H.T. Chen, H. Ay, The Development of High Efficiency Air-Cooled Stream Condenser for the Power plant (2/2), Report of National Council Science, Taiwan, NSC 92-2622-E-006-146, 2005.
[29] V.S. Arpaci, S.H. Kao, and A. Selamet, Introduction to Heat Transfer, Prentice-Hall, pp.588, 1999.
[30] F.P. Incropera, and D.P. Dewitt, Introduction to Heat Transfer, 3rd ed., John Wiley & Sons, table1.1, pp.8, 1996.
[31] Q. Chen, W. Xu, A zero-equation turbulence model for indoor airflow simulation, Energy and Buildings, vol.28, pp. 137-144, 1998.
[32] B.E. Launder, D.B. Spalding, The numerical computation of turbulent flows, Computer Methods in Applied Mechanics and Engineering, vol. 3, pp. 269-289, 1974.
[33] V. Yakhot, S.A. Orszag, S. Thangam, T.B. Gatski, C.G. Speziale, Development of turbulence models for shear flows by a double expansion technique, Physics of Fluids A, vol.4, pp.1510-1520, 1992.
[34] FLUENT Dynamics Software, FLUENT 4, Lehanon, NH, 2002.
[35] W.M. Rohsenow, J.P. Hartnett, Y.I. Cho, “Handbook of Heat TRANSFER”, 3rd ed., McGraw-Hill, New York, NY, 1988.
校內:立即公開