簡易檢索 / 詳目顯示

研究生: 賴建安
Lie, Chien-An
論文名稱: 孔洞對裂紋漸近場高階參數影響之研究
Effects of the hole on the higher order parameters for the near-tip fields of a crack
指導教授: 宋見春
Song, Jian-Chun
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2012
畢業學年度: 101
語文別: 中文
論文頁數: 86
中文關鍵詞: 裂縫孔洞正交異向性材料高階項係數有限元素分析應力強度因子最小二乘法
外文關鍵詞: crack, hole, orthotropic material, coefficient of the higher-order terms, finite element analysis, stress intensity factor, Least-squares method
相關次數: 點閱:103下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨在研究孔洞對裂紋漸近場高階參數之影響,文中首先推演均質正交異向性材料在裂縫尖端的應力與位移含高階參數之漸近場表達式,其後介紹最小二乘法原理與配合應用ABAQUS軟體進行高階項係數之計算,數值範例中探討了均質正交異向性材料裂縫體,受拉應力或剪應力作用下孔洞對高階項係數之影響,高階項係數數值計算之收斂性和精確度也做了討論與比較。

    The aim of this research is to study the influence of a hole on high-order parameters of near-tip fields of a crack .First of all, the expression of the asymptotic stress and displacement fields including the high-order parameters of a crack tip are introduced for an orthotropic material. After that, the Least-squares method is introduced along with the use of ABAQUS software to calculate high-order parameters.The influence of holes on high-order parameters are studied by several numerical examples where the cracked orthotropic material is subjected to tensile stress or shear stress.The convergence and accuracy of the numerical computations of high-order parameters are also discussed and compared.

    摘要…………………………………………………………………………I Abstract…………………………………………………………………II 誌謝………………………………………………………………………III 目錄………………………………………………………………………IV 表目錄……………………………………………………………………VII 圖目錄……………………………………………………………………XII 第一章 緒論………………………………………………………………1 1-1前言………………………………………………………………1 1-2文獻回顧…………………………………………………………2 1-3本文綱要…………………………………………………………3 第二章 基本公式…………………………………………………………5 2-1異向性材料應力與應變關係式…………………………………5 2-2應力和應變轉換…………………………………………………9 第三章 破壞力學相關理論……………………………………………12 3-1裂縫尖端的平面位移漸近場和應力漸近場……………………12 3-2應力強度因子及T-stress之推演………………………16 3-3最小二乘法算應力強度因子及高階參數………………………19 第四章 有限元素分析……………………………………………………24 4-1奇異元素(Singularity element)…………………………………24 4-2套裝軟體:ABAQUS 6.8-1……………………………………28 第五章 數值模擬結果與討論……………………………………………36 5-1驗證基準問題……………………………………………………36 5-2驗證中央裂縫平板(Center-cracked plate)問題……………36 5-2-1均質材料純Mode I範例……………………………………36 5-2-2均質材料純Mode II範例…………………………………40 5-2-3均質材料Mixed-Mode範例………………………………42 5-2-4驗證他人相關研究…………………………………………47 5-3正交異向性材料裂縫之平板問題………………………………49 5-3-1驗證均質正交異向性材料單邊裂縫……………………49 5-3-2驗證均質正交異向性材料中央斜裂縫………………...…….52 5-4平板之裂縫含孔洞問題…………………………………………54 5-4-1驗證均質等向性材料Mode I裂縫含孔洞…………………54 5-4-2均質正交異向性材料Mode I裂縫含孔洞…………………57 5-4-3均質正交異向性材料Mode II裂縫含孔洞………………67 5-5項數多寡與節點數量對係數準確性的影響……………………77 5-6網格切割的疏密對 係數的影響……………………………79 第六章 結論………………………………………………………………82 參考文獻…………………………………………………………………84

    [1] Ayatollahi, M.R. and Nejati, M., An over-deterministic method for calculation of coefficient of crack tip asymptotic field from finite element analysis. Fatigure and Fracture of Engineering Materials and Structures, Vol.34, 159-176, 2010.
    [2] Chen, K.L. and Atluti, S.N., Comparison of different methods of evaluation of weight functions for 2-D mixed-mode fracture analyses. Egineering Fracture Mechanics, Vol.34, 935-956, 1989.
    [3] Chu, S.J. and Hong, C.S., Application of the integral to mixed mode crack problems for anisotropic composite laminates. Egineering Fracture Mechanics, Vol.35, 1093-1103, 1990.
    [4] Hasebe, N. and Ueda, M., Crack originating from a corner of a square hole. Egineering Fracture Mechanics, Vol.13, 913-923, 1980.
    [5] Ju, S.H., Simulating stress intensity factors for anisotropic materals by the least-squares method. International Journal of Fracture, Vol.81, 283-297, 1996.
    [6] Khalil, S.A., Sun, C.T. and Hwang, W.C., Application of a hybrid finite element method to determine stress intensity factors in unidirectional composites. International Journal of Fracture, Vol.31, 37-51, 1986.
    [7] Lee, L.J. and Wang, C.H., Stress intensity factors by weight function method for cracked composite laminates. Egineering Fracture Mechanics, Vol.48, 267-279, 1994.
    [8] Ashari, S.E. and Mohammadi, S., Delamination analysis of composites by new orthotropic biomaterial extended finite element method. International Journal for numerical methods in engineering, Vol.86, 1507-1543, 2011.
    [9] Rice, J.R., A path independent integral and the approximate analysis of strain concentration by notches and cracks. Journal of Applied Mechanics, Vol.35, 379-386, 1968.
    [10] Rao, B.N. and Rahman, S., An interaction integral method for analysis of cracks in orthotropic functionally graded materials. Computational Mechanics, Vol.32, 40-51, 2003.
    [11] Sih, G.C., Paris, P.C. and Irwin, G.R., On cracks in rectilinearly anisotropic bodies. International Journal of Fracture, Vol.1, 189-203, 1965.
    [12] Su, R.K.L. and Fok, S.L., Determination of coefficients of the crack tip asymptotic field by fractal hybrid finite elements. Egineering Fracture Mechanics, Vol.74, 1649-1664, 2007.
    [13] Tweed, J. and Rooke, D.P., The distribution of stress near the tip of a radial crack at the edge of a circular hole. International Journal Egineering Science, Vol.11, 1185-1195, 1973.
    [14] Tweed, J. and Rooke, D.P., The stress intensity factor for a crack at the edge of a loaded hole. International Journal Solids Structures, Vol.15, 899-906, 1979.
    [15] Yum, Y.J. and Hong, C.S., Stress intensity factors in finite orthotropic plates with a crack under mixed mode deformation. International Journal of Fracture, Vol.47, 53-67, 1991.
    [16] Yan, X., An empirical formula for stress intensity factors of cracks emanating from a circular hole in a rectangular plate in tension. Engineering Failure Analysis, Vol.14, 935-940, 2007.
    [17] 葉庭恩, 異向性界面裂紋分叉行為之研究. 國立成功大學土木工程研究所碩士論文. 2003.

    下載圖示 校內:2015-01-03公開
    校外:2017-01-03公開
    QR CODE