簡易檢索 / 詳目顯示

研究生: 王喻生
Wang, Yu-Sheng
論文名稱: 應用於次世代金屬銅製程鉭/釕/鈷基底多功能阻障層材料電化學及物理特性之研究
A Study on Electrochemical and Physical Properties of Tantalum, Ruthenium and Cobalt-based Materials as Multi-purpose Diffusion Barrier for Next-generation Cu Metallization
指導教授: 李文熙
Lee, Wen-Hsi
共同指導教授: 王英郎
Wang, Ying-Lang
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 167
中文關鍵詞: 阻障層大馬士革銅製程金屬離子電漿銅晶種孿生銅
外文關鍵詞: Ta, Ru, Co, barrier, Cu damascene processes, IMP PVD, Cu seed, Cu twins
相關次數: 點閱:92下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著製程線寬縮減至45奈米以下時,窄線寬所造成導線阻值提升進而影響訊號傳導延遲時間,已經成為半導體製程中所面臨的的重大挑戰。本研究的第一部以大馬士革銅製程中微小導線體積出發,討論如何在顧及階梯覆蓋情形下,同時降低阻障層阻值的方法。為了改善窄線寬的阻障層填洞能力,物理氣相沉積技術由物理方向過濾法轉成了金屬離子電漿控制法。於此研究中,發現金屬離子電漿製程可於沉積過程中藉由調整射頻功率改變基材底部偏壓,進一步得到良好階梯覆蓋率。
    於氮化鉭的製程後,利用射頻功率改變基材底部偏壓作表面物理電漿轟擊可以使後來沉積的鉭金屬改變晶相。在未對氮化鉭加入表面物理電漿轟擊時,沉積的鉭金屬呈現為高阻值的晶相。在對氮化鉭加入表面物理電漿轟擊後,隨著轟擊時間越長沉積的鉭金屬呈現出低阻值晶相。另外,改變氮化鉭製程中隨著氮含量增加,掃描式電子顯微鏡拍出之影像逐漸由柱狀結構轉變為無定型結構,且特別的是氮含量越高,在表面物理電漿轟擊所需時間越短即可讓後續沉積鉭金屬晶相表現出來得到低阻值特性。
    本研究的第二部為探討阻障層鉭金屬晶相與晶相,在半導體後續整合中對後續銅晶種層、銅電沉積材料特性及化學機械研磨腐蝕行為的影響。銅晶種層的晶相會受到鉭金屬晶相影響而呈現出不同的晶格優勢方向,銅晶種沉積於鉭金屬晶相呈現出較弱的(111)晶格優勢方向而銅晶種沉積於鉭金屬晶相呈現出較強(111)晶格優勢方向。我們接著進一步探討利用電鍍銅製程手法完成金屬填洞行為下的材料特性分析。電致遷移為銅導線可靠度的一個重要指標,由電鍍銅的材料特性,孿生銅結構目前為認定能提高抵抗電子遷移能力的重要結構。利用改變銅電鍍高低電流混合製造手法可以成功在銅線中製造插入一特殊界層,加入這層有效讓銅導線孿生結構增加。此介層為一低電流高轉速電鍍銅,利用二次離子質譜儀偵測到此介層為含碳量雜質高的一層電鍍銅,其特性為有效減緩銅自我退火晶粒成長速度。推測此介層產生了電鍍銅本身自我退火晶粒成長應力改變,進而觸發導線孿生銅的產生。
    最後,本研究的第三部分探討了新穎的多功能阻障層材料,希望藉由材料上的改變與嘗試來開發無需晶種層的銅擴散阻障層,且同時具有良好的潤滑能力、熱穩定性、以及阻障能力。本研究使用釕摻雜氮和鈷摻雜鎢的阻障層材料,探討他們在含氮量與含鎢量改變之下所展現物理特性與電化學特性,以及直接電沉積銅的可行性評估。研究發現釕摻雜氮時可具有阻擋銅擴散能力。藉由交流阻抗分析儀及循環伏安分析法等電化學手法,我們發現釕與氮化釕皆適合銅的直接電沉積,但是鈷卻易溶解於酸性溶液當中。藉由摻雜適量的鎢於鈷當中,可有效改善鈷的抗腐蝕性,使其有極大的潛力成為新一代多功能的阻障層材料。

    As the gate length of semiconductor devices shrink down to 45 nm and beyond, the width of metal connects shrink at the same time and the impact of RC delay become increasingly serious. The first part of this study is discussing the method of improving the step coverage of barrier layers and lowering their resisvitiy at the same time in narrow damascenes opening. In order to improve the step coverage of physic vapor deposition (PVD) process, a new method called ionized metal plasma PVD is widely used as an alternative to conventional PVD method. In this study, we found that great improvement in step coverage can be obtained through changing substrate bias voltage by radio frequency (RF) power.
    For Tantalum-based (Ta-based) materials, Tantalum nitride (TaNx) is served as a copper diffusion barrier by its amouphous structure and Ta is ued as a wetting layer of Cu. This stack structure with TaN first and than Ta deposit becomes a well solution for a Cu barrier layer. In this work, creating substrate bias voltage after TaN deposition is used to generate plasma bombardment on TaN films. As the level of bombardment increase, the sequentially deposited Ta wetting layer will change from high-resistivity  phase to low-resistivity  phase. Meanwhile, we found that increasing nitrogen (N2) content makes TaNx change from Ta-like column structure to amouphous structure. As TaNx films are deposited with higher N2 flow, sequentially deposited Ta layers can form low-resistivity  phase with lower level of plasma bombardment.
    The second part of the study is to discuss the interaction of sequential Cu deposition and chemical mechanical polishing (CMP) on Ta barriers with different preferred orientation. Cu seed layers deposited on -Ta shows a weaker Cu (111) out of plane orientation than ones deposited on -Ta. With regard to the lattice correlation, -Ta with loose structure will not limit the growth of PVD Cu seed out of its plane orientation. On the contrary, -Ta constrains the growth of Cu seed and lead to formation of such mismatch structure. For Cu gapfilling, previous research have pointed out that Cu twin structure can effectively prevent electromigration. In this work, we demonstated a simple method to insert an interlayer within the ECP Cu film and form Cu twin structure. The interlayer deposited in the condition of low plating current and high rotaional speed shows carbon-rich (C-rich) charateristic. This kind of interlayer suppresses the rate of Cu self-annealing and further induces the formation of Cu twin structure.
    The third part of this study is focused on novel materials for seed-less barrier layers, which should demonstrate good thermal stability and wetting ability at the same time. The physical and electrochemical properties of N-doped Ru and W-doped Co with different atomic ratio were investigated. Results show that RuN demonstrates no Cu diffusion into silicon.. Electrochemical studies by impedence spectroscopy and cyclic voltammetry show that both Ru and RuN are suitable for Cu direct-plating. However, we found that Co is easy to be dissolved in acidic Cu-plating bath. By adding W into Co, the anti-corrosion capability of Co-based material is dramatically improved, thus making it a possible solution as a multi-purpose barrier for next-generation Cu metallization.

    Content IX Table captions XII Figure captions XIII Chapter 1 Introduction 1 1-1 Background and motivation 1 1-1-1 BEOL overview 1 1-1-2 Introduction of bias sputter – narrow hole gap-filling 8 1-1-3 Introduction of barrier films 14 1-1-4 Introduction of Cu process and electromigration 20 1-1-5 Introduction of novel concepts of barrier layers 34 1-1-6 Motivation 38 1-2 Overview of the thesis 41 Chapter 2 Principle and Analysis Technology 42 2-1 RC delay improvement 42 2-1-1 Total resistance at trench area 42 2-1-2 Total resistance at via area 44 2-2 Diffusion barrier 47 2-2-1 The types of diffusion barrier 47 2-2-2 Diffusion behavior and diffusion path in the barrier 48 2-3 Electrochemical principle 51 2-3-1 Electrochemical system 51 2-4 Potentiodynamic sweep method 58 2-4-1 Linear sweep voltammetry (LSV) 58 2-4-2 Cyclic voltammetry (CV) 60 2-5 Thin film analysis technology 64 2-5-1 Four point probes 64 2-5-2 Scanning electron microscope (SEM) 66 2-5-3 X-ray diffraction (XRD) 68 2-5-4 Transmission electron microscopy (TEM) 70 2-5-5 Secondary ion mass spectrometry (SIMS) 71 Chapter 3 Experimental Scheme and Chart 72 3-1 Experimental materials 72 3-1-1 Targets 72 3-1-2 Substrate 72 3-1-3 Process gas 72 3-1-4 Chemicals 72 3-1-5 Slurry 72 3-2 Process equipment 74 3-2-1 Sputtering system 74 3-2-2 Electroplating system 75 Chapter 4 Properties of Ta-based Barrier on Cu Metallization 77 4-1 Introduction of Cu barrier 77 4-2 Experimental details 80 4-3 Effect of bias sputtering on step coverage of thin Ta-based Cu barriers 81 4-4 Electrical properties of plasma-treated Ta/TaNx diffusion barrier 87 4-5 Under-layer behavior study of low resistance Ta/TaNx barrier film 92 Chapter 5 Investigation of Cu Metallization 97 5-1 Background of Cu ECP 97 5-1-1 Introduction of Cu ECP in Si wafer processing 97 5-1-2 Organic additives in plating baths 99 5-2 Background of Cu CMP 101 5-2-1 Mechanism of Cu CMP 101 5-2-2 Cu corrosion 104 5-3 Experimental details 106 5-4 Novel methods for Cu out of plan orientation control by under Ta-based layer substrate 108 5-5 Effects of (002) β-Ta barrier on copper chemical mechanical polishing behavior 115 5-6 An electroplating method for Cu plane twin boundary manufacturing 121 Chapter 6 Studies on Next-generation Barrier Layer 128 6-1 Background of next-generation barrier 128 6-2 Experimental details of Ru-based barrier film 129 6-3 Investigation of Ru-based Cu barrier film 130 6-4 Experimental details of Co-based barrier film 137 6-5 Investigation of Co-based Cu barrier film 138 Chapter 7 Conclusion and Future Work 158 7-1 Conclusion 158 7-2 Future work 161 Reference 162

    1. S. P. Murarka, Metallization Theory and Practice for VLSI and ULSI Butterworth-Heinemann(UK), 1992, 270 (1992).
    2. M. Quirk and J. Serda, Semiconductor manufacturing technology. (Prentice Hall NJ, USA, 2001).
    3. H. Xiao, Introduction to semiconductor manufacturing technology. (Prentice Hall Upper Saddle River, New Jersey, 2001).
    4. S.-P. Jeng, R. H. Havemann and M.-C. Chang, presented at the Materials Research Society Symposium Proceedings, 1994 (unpublished).
    5. M. T. Bohr, presented at the Electron Devices Meeting, 1995., International, 1995 (unpublished).
    6. T. Takewaki, T. Ohmi and T. Nitta, presented at the VLSI Technology, 1995. Digest of Technical Papers. 1995 Symposium on, 1995 (unpublished).
    7. L. Wilson, (2013).
    8. H. Dalal, R. Joshi, H. Rathore and R. Fillipi, presented at the Electron Devices Meeting, 1993. IEDM'93. Technical Digest., International, 1993 (unpublished).
    9. L. Peters, Cover Story, 64 (1998).
    10. H. Iwai, Microelectronic Engineering 86 (7), 1520-1528 (2009).
    11. R. Joshi and S. Brodsky, Appl Phys Lett 61 (21), 2613-2615 (1992).
    12. S. Rossnagel and R. Sward, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 13 (1), 156-158 (1995).
    13. R. Joshi, H. Dalal and R. Filippi, Appl Phys Lett 66 (19), 2484-2486 (1995).
    14. S. Rossnagel, IBM Journal of Research and development 43 (1.2), 163-179 (1999).
    15. S. Rossnagel, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 16 (5), 2585-2608 (1998).
    16. U. Helmersson, M. Lattemann, J. Bohlmark, A. P. Ehiasarian and J. T. Gudmundsson, Thin solid films 513 (1), 1-24 (2006).
    17. Y. Tanaka, (Google Patents, 1999), Vol. 5,976,327.
    18. S. Bothra, D. Pramanik and S. Sengupta, (Google Patents, 2001), Vol. 6,176,983.
    19. P. Ding, R. Tao, B. Chin and D. Carl, (Google Patents, 2001), Vol. 6,200,433.
    20. P. Gopalraja, S. Edelstein, A. Tepman, P. Ding, D. Ghosh and N. Maity, (Google Patents, 2002), Vol. 6,350,353.
    21. T. Laurila, K. Zeng, J. K. Kivilahti, J. Molarius and I. Suni, Journal of Applied Physics 88 (6), 3377-3384 (2000).
    22. S. M. Rossnagel and H. Kim, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 21 (6), 2550 (2003).
    23. M. Stavrev, C. Wenzel, A. Möller and K. Drescher, Applied surface science 91 (1), 257-262 (1995).
    24. W.-F. Wu, K.-L. Ou, C.-P. Chou and C.-C. Wu, Journal of The Electrochemical Society 150 (2), G83-G89 (2003).
    25. E. Kolawa, J. Chen, J. Reid, P. Pokela and M. A. Nicolet, Journal of Applied Physics 70 (3), 1369-1373 (1991).
    26. K. M. Latt, Y. Lee, S. Li, T. Osipowicz and H. Seng, Materials Science and Engineering: B 84 (3), 217-223 (2001).
    27. T. Hara, K. Sakata, A. Kawaguchi and S. Kamijima, Electrochemical and Solid-State Letters 4 (11), C81-C84 (2001).
    28. T. Hara and K. Sakata, Electrochemical and Solid-State Letters 4 (10), G77-G79 (2001).
    29. C. Lingk and M. Gross, Journal of Applied Physics 84 (10), 5547-5553 (1998).
    30. J. Harper, C. Cabral, P. Andricacos, L. Gignac, I. Noyan, K. Rodbell and C. Hu, Journal of Applied Physics 86 (5), 2516-2525 (1999).
    31. S. Brongersma, E. Richard, I. Vervoort, H. Bender, W. Vandervorst, S. Lagrange, G. Beyer and K. Maex, Journal of Applied Physics 86 (7), 3642-3645 (1999).
    32. S.-C. Chang, J.-M. Shieh, B.-T. Dai, M.-S. Feng and Y.-H. Li, Journal of The Electrochemical Society 149 (9), G535-G538 (2002).
    33. J. Koike, M. Wada, M. Sanada and K. Maruyama, Appl Phys Lett 81 (6), 1017-1019 (2002).
    34. T. Hara, H. Toida and Y. Shimura, Electrochemical and Solid-State Letters 6 (7), G98-G100 (2003).
    35. C. Detavernier, S. Rossnagel, C. Noyan, S. Guha, C. Cabral and C. Lavoie, Journal of Applied Physics 94 (5), 2874-2881 (2003).
    36. H. Lee, W. D. Nix and S. S. Wong, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 22 (5), 2369-2374 (2004).
    37. K. Pantleon and M. A. Somers, Journal of Applied Physics 100 (11), 114319-114319-114317 (2006).
    38. M. Hasegawa, Y. Nonaka, Y. Negishi, Y. Okinaka and T. Osaka, Journal of The Electrochemical Society 153 (2), C117-C120 (2006).
    39. M. Stangl, J. Acker, V. Dittel, W. Gruner, V. Hoffmann and K. Wetzig, Microelectronic Engineering 82 (2), 189-195 (2005).
    40. A. Tzanavaras, G. Young and S. Gleixner, Journal of The Electrochemical Society 152 (2), C101-C107 (2005).
    41. M. Stangl, M. Lipták, A. Fletcher, J. Acker, J. Thomas, H. Wendrock, S. Oswald and K. Wetzig, Microelectronic Engineering 85 (3), 534-541 (2008).
    42. C.-K. Hu, R. Rosenberg and K. Lee, Appl Phys Lett 74 (20), 2945-2947 (1999).
    43. J. Proost, T. Hirato, T. Furuhara, K. Maex and J. P. Celis, Journal of Applied Physics 87 (6), 2792 (2000).
    44. C.-K. Hu and J. Harper, Materials Chemistry and Physics 52 (1), 5-16 (1998).
    45. L. Lu, Y. Shen, X. Chen, L. Qian and K. Lu, Science 304 (5669), 422-426 (2004).
    46. Y. Shen, L. Lu, Q. Lu, Z. Jin and K. Lu, Scripta materialia 52 (10), 989-994 (2005).
    47. L. Lu, X. Chen, X. Huang and K. Lu, Science 323 (5914), 607-610 (2009).
    48. K.-C. Chen, W.-W. Wu, C.-N. Liao, L.-J. Chen and K. Tu, Science 321 (5892), 1066-1069 (2008).
    49. J. R. Black, Electron Devices, IEEE Transactions on 16 (4), 338-347 (1969).
    50. C. K. Hu, L. Gignac, S. G. Malhotra, R. Rosenberg and S. Boettcher, Appl Phys Lett 78 (7), 904-906 (2001).
    51. J. He and Z. Suo, presented at the AIP Conference Proceedings, 2004 (unpublished).
    52. C. N. Liao, K. C. Chen, W. W. Wu and L. J. Chen, Appl Phys Lett 87 (14) (2005).
    53. K. C. Chen, W. W. Wu, C. N. Liao, L. J. Chen and K. N. Tu, Science 321 (5892), 1066-1069 (2008).
    54. K. Lu, L. Lu and S. Suresh, Science 324 (5925), 349-352 (2009).
    55. C. K. Hu, D. Canaperi, S. Chen, L. Gignac, S. Kaldor, M. Krishnan, S. Malhotra, E. Liniger, J. Lloyd and D. Rath, Thin solid films 504 (1), 274-278 (2006).
    56. T. Nogami, M. He, X. Zhang, K. Tanwar, R. Patlolla, J. Kelly, D. Rath, M. Krishnan, X. Lin and O. Straten, presented at the Interconnect Technology Conference (IITC), 2013 IEEE International, 2013 (unpublished).
    57. H. Y. Huang, C. Hsieh, S. Jeng, H. Tao, M. Cao and Y. Mii, presented at the Interconnect Technology Conference (IITC), 2010 International, 2010 (unpublished).
    58. N. Torazawa, T. Hinomura, K. Mori, Y. Koyama, S. Hirao, E. Kobori, H. Korogi, K. Maekawa, K. Tomita and H. Chibahara, presented at the Interconnect Technology Conference, 2009. IITC 2009. IEEE International, 2009 (unpublished).
    59. H. Wojcik, C. Krien, U. Merkel, J. Bartha, M. Knaut, M. Geidel, B. Adolphi, V. Neumann, C. Wenzel and M. Bendlin, Microelectronic Engineering 112, 103-109 (2013).
    60. H. Wojcik, R. Kaltofen, U. Merkel, C. Krien, S. Strehle, J. Gluch, M. Knaut, C. Wenzel, A. Preusse and J. Bartha, Microelectronic Engineering 92, 71-75 (2012).
    61. H. Wojcik, R. Kaltofen, C. Krien, U. Merkel, C. Wenzel, J. Bartha, M. Friedemann, B. Adolphi, R. Liske and V. Neumann, presented at the Interconnect Technology Conference and 2011 Materials for Advanced Metallization (IITC/MAM), 2011 IEEE International, 2011 (unpublished).
    62. L. Carbonell, H. Volders, N. Heylen, K. Kellens, R. Caluwaerts, K. Devriendt, E. A. Sanchez, J. Wouters, V. Gravey and K. Shah, presented at the Interconnect Technology Conference, 2009. IITC 2009. IEEE International, 2009 (unpublished).
    63. H.-S. Lu, S.-F. Ding, G.-P. Ru, Y.-L. Jiang and X.-P. Qu, presented at the Solid-State and Integrated Circuit Technology (ICSICT), 2010 10th IEEE International Conference on, 2010 (unpublished).
    64. T. Nogami, J. Maniscalco, A. Madan, P. Flaitz, P. DeHaven, C. Parks, L. Tai, B. Lawrence, R. Davis and R. Murphy, presented at the Interconnect Technology Conference (IITC), 2010 International, 2010 (unpublished).
    65. H. Shimizu, K. Sakoda, T. Momose and Y. Shimogaki, Japanese journal of applied physics 51 (5S), 05EB02 (2012).
    66. H. Shimizu, K. Sakoda and Y. Shimogaki, Microelectronic Engineering 106, 91-95 (2013).
    67. M. A. Nicolet, Thin Solid Films 52 (3), 415-443 (1978).
    68. C.-C. Chang, J.-S. Chen and W.-S. Hsu, Journal of The Electrochemical Society 151 (11), G746-G750 (2004).
    69. A. A. Istratov and E. R. Weber, Journal of The Electrochemical Society 149 (1), G21-G30 (2002).
    70. M. Stavrev, D. Fischer, A. Preuß, C. Wenzel and N. Mattern, Microelectronic Engineering 33 (1), 269-275 (1997).
    71. D. Face and D. Prober, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 5 (6), 3408-3411 (1987).
    72. A. Jiang, A. Yohannan, N. O. Nnolim, T. A. Tyson, L. Axe, S. L. Lee and P. Cote, Thin solid films 437 (1), 116-122 (2003).
    73. G. Chen, P. Lee and S. Chen, Thin solid films 353 (1), 264-273 (1999).
    74. M. Stavrev, D. Fischer, F. Praessler, C. Wenzel and K. Drescher, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 17 (3), 993-1001 (1999).
    75. S. Rossnagel, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 20 (6), 2328-2336 (2002).
    76. P. Klaver and B. Thijsse, Thin solid films 413 (1), 110-120 (2002).
    77. D. Josell, D. Wheeler, W. Huber and T. Moffat, Physical Review Letters 87 (1), 016102 (2001).
    78. K. M. Takahashi and M. E. Gross, Journal of The Electrochemical Society 146 (12), 4499-4503 (1999).
    79. R. K. Singh and R. Bajaj, MRS bulletin 27 (10), 743-751 (2002).
    80. G. B. Basim and B. M. Moudgil, Kona 21, 178-184 (2003).
    81. K.-W. Chen and Y. L. Wang, Journal of The Electrochemical Society 154 (1), H41-H47 (2007).
    82. S. V. Babu, K. C. Cadien and H. Yano, Chemical-Mechanical Polishing 2001-Advances and Future Challenges. (Cambridge University Press, 2001).
    83. C. M. Miller and R. L. Valentine, Water Research 33 (12), 2805-2816 (1999).
    84. T. Du, D. Tamboli and V. Desai, Microelectronic Engineering 69 (1), 1-9 (2003).
    85. J. Hernandez, P. Wrschka and G. Oehrlein, Journal of The Electrochemical Society 148 (7), G389-G397 (2001).
    86. O. Chyan, T. N. Arunagiri and T. Ponnuswamy, Journal of The Electrochemical Society 150 (5), C347-C350 (2003).
    87. R. Chan, T. Arunagiri, Y. Zhang, O. Chyan, R. Wallace, M. Kim and T. Hurd, Electrochemical and Solid-State Letters 7 (8), G154-G157 (2004).
    88. M. Damayanti, T. Sritharan, Z. Gan, S. Mhaisalkar, N. Jiang and L. Chan, Journal of The Electrochemical Society 153 (6), J41-J45 (2006).
    89. T. Moffat, M. Walker, P. Chen, J. Bonevich, W. Egelhoff, L. Richter, C. Witt, T. Aaltonen, M. Ritala and M. Leskelä, Journal of The Electrochemical Society 153 (1), C37-C50 (2006).
    90. M. Damayanti, T. Sritharan, S. Mhaisalkar, H. Engelmann, E. Zschech, A. Vairagar and L. Chan, Electrochemical and Solid-State Letters 10 (6), P15-P17 (2007).
    91. J. Chu, C. Lin and V. John, Appl Phys Lett 91 (13), 132109-132109-132103 (2007).
    92. C.-W. Chen, J.-S. Chen and J.-S. Jeng, Journal of The Electrochemical Society 155 (6), H438-H442 (2008).
    93. J. Chen and S. Bull, Thin solid films 494 (1), 1-7 (2006).
    94. M. Kawamura, K. Yagi, Y. Abe and K. Sasaki, Thin solid films 494 (1), 240-243 (2006).
    95. M. Damayanti, T. Sritharan, S. Mhaisalkar and Z. Gan, Appl Phys Lett 88 (4), 044101-044101-044103 (2006).
    96. S. Ogawa, N. Tarumi, M. Abe, M. Shiohara, H. Imamura and S. Kondo, presented at the Interconnect Technology Conference, 2008. IITC 2008. International, 2008 (unpublished).
    97. C.-Y. Wu, Y.-S. Wang and W.-H. Lee, Journal of The Electrochemical Society 159 (11), D684-D689 (2012).
    98. W.-Z. Xu, J.-B. Xu, H.-S. Lu, J.-X. Wang, Z.-J. Hu and X.-P. Qu, Journal of The Electrochemical Society 160 (12), D3075-D3080 (2013).
    99. Y. Kakuhara, N. Kawahara, K. Ueno and N. Oda, Japanese journal of applied physics 47 (6R), 4475 (2008).
    100. S. Muranaka, M. Sueyoshi, K. Mori, K. Maekawa, M. Fujisawa and K. Asai, Microelectronic Engineering 105, 91-94 (2013).
    101. R. B. Bird, W. E. Stewart and E. N. Lightfoot, Transport phenomena. (John Wiley & Sons, 2007).

    下載圖示 校內:2019-07-26公開
    校外:2019-07-26公開
    QR CODE