| 研究生: |
周鈺捷 Chou, Yu-Chieh |
|---|---|
| 論文名稱: |
經光化學轉化後之氧化石墨稀的抗菌活性機制 Mechanism of Antibacterial Activity of Photochemically Transformed Graphene Oxide |
| 指導教授: |
侯文哲
Hou, Wen-Che |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 45 |
| 中文關鍵詞: | 氧化石墨烯 、轉化與宿命 、抗菌活性 、氧化壓力 |
| 外文關鍵詞: | graphene oxide, fate and transformation, antibacterial activity, oxidative stress |
| 相關次數: | 點閱:91 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
石墨烯和氧化石墨稀材料在眾多領域發展應用,對於環境生態的影響必須在廣泛應用前評估。我們過去研究顯示,氧化石墨烯在全幅模擬太陽光下被光逐漸反應成較小且失去含氧官能基的產物,隨著光反應環境的不同,我們發現反應後的氧化石墨烯產物有些抗菌毒性變強,有些毒性消失,惟原因仍不清楚,因此本研究的目的為探討此現象發生的機制。我們藉由抗菌活性、細菌的型態、細胞膜的完整性與抗氧化劑的作用來分析。結果顯示直接光轉化後的氧化石墨稀毒性增加,原因可能是光轉化去除氧化石墨烯部分官能基與/或尺寸變小。大腸桿菌K12暴露於氧化石墨稀及照光的氧化石墨稀,觀察到細胞外表的變形且細胞膜破裂。從抗氧化劑的添加和未添加相比可以減少細菌的失活,由此可之,氧化壓力是參與實驗結果的抗菌活性。
This work examined the mechanism behind the antibacterial activity of graphene oxide (GO) before and after phototransformation in sunlight conditions. Our previous research has shown that GO can be phototransformed under simulated sunlight exposure, forming products with progressively reduced sizes and oxygen-containing functionalities. Depending on the phototransformation conditions, GO could become more toxic, while the toxicity was negated after phototransformation in the presence of H2O2 (i.e., indirect photolysis). While the finding is interesting and could aid in assessing the ecological impact of GO, the mechanism is not completely clear. This is the motivation of this study. New techniques including the antibacterial test of GO materials deposited on surfaces, cell morphology, membrane integrity using fluorescence dyes, and antioxidant effect, and reactive oxygen species (ROS) detection were developed and used to shed mechanistic light on the altered toxicity after phototransformation. The results indicate that bacteria incubated with phototransformed GO deposited on surfaces showed increased growth inhibition. The enhanced toxicity could be attributed to the reduced functional groups and/or sizes of GO after phototransformation. Greater cell deformation and increased membrane permeability correlated with larger extent of GO phototransformation. The growth of bacteria incubated with GO materials and antioxidants including natural organic matter (NOM) increased, indicating that oxidative stress likely plays a role. Collectively, the results indicate that phototransformation enhanced antibacterial activity is associated with oxidative stress that increases with the degree of phototransformation.
(1) Novoselov, K. S.; Fal′ko, V. I.; Colombo, L.; Gellert, P. R.; Schwab, M. G.; Kim, K. A roadmap for graphene. Nature 2012, 490 (7419), 192–200.
(2) Zhu, Y.; Murali, S.; Cai, W.; Li, X.; Suk, J. W.; Potts, J. R.; Ruoff, R. S. Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Adv. Mater. 2010, 22 (35), 3906–3924.
(3) Eda, G.; Lin, Y.-Y.; Mattevi, C.; Yamaguchi, H.; Chen, H.-A.; Chen, I.-S.; Chen, C.-W.; Chhowalla, M. Blue Photoluminescence from Chemically Derived Graphene Oxide. Adv. Mater. 2010, 22 (4), 505–509.
(4) Chung, C.; Kim, Y.-K.; Shin, D.; Ryoo, S.-R.; Hong, B. H.; Min, D.-H. Biomedical Applications of Graphene and Graphene Oxide. Acc. Chem. Res. 2013, 46 (10), 2211–2224.
(5) Ren, W.; Cheng, H.-M. The global growth of graphene. Nat. Nanotechnol. 2014, 9 (10), 726–730.
(6) Hu, X.; Zhou, Q. Health and Ecosystem Risks of Graphene. Chem. Rev. 2013, 113 (5), 3815–3835.
(7) Zhao, J.; Wang, Z.; White, J. C.; Xing, B. Graphene in the Aquatic Environment: Adsorption, Dispersion, Toxicity and Transformation. Environ. Sci. Technol. 2014, 48 (17), 9995–10009.
(8) Akhavan, O.; Ghaderi, E. Toxicity of Graphene and Graphene Oxide Nanowalls Against Bacteria. ACS Nano 2010, 4 (10), 5731–5736.
(9) Hu, W.; Peng, C.; Luo, W.; Lv, M.; Li, X.; Li, D.; Huang, Q.; Fan, C. Graphene-Based Antibacterial Paper. ACS Nano 2010, 4 (7), 4317–4323.
(10) Liu, S.; Zeng, T. H.; Hofmann, M.; Burcombe, E.; Wei, J.; Jiang, R.; Kong, J.; Chen, Y. Antibacterial Activity of Graphite, Graphite Oxide, Graphene Oxide, and Reduced Graphene Oxide: Membrane and Oxidative Stress. ACS Nano 2011, 5 (9), 6971–6980.
(11) Liu, S.; Hu, M.; Zeng, T. H.; Wu, R.; Jiang, R.; Wei, J.; Wang, L.; Kong, J.; Chen, Y. Lateral Dimension-Dependent Antibacterial Activity of Graphene Oxide Sheets. Langmuir 2012, 28 (33), 12364–12372.
(12) Perreault, F.; de Faria, A. F.; Nejati, S.; Elimelech, M. Antimicrobial Properties of Graphene Oxide Nanosheets: Why Size Matters. ACS Nano 2015, 9 (7), 7226–7236.
(13) Zou, X.; Zhang, L.; Wang, Z.; Luo, Y. Mechanisms of the Antimicrobial Activities of Graphene Materials. J. Am. Chem. Soc. 2016, 138 (7), 2064–2077.
(14) Guo, X.; Mei, N. Assessment of the toxic potential of graphene family nanomaterials. J. Food Drug Anal. 2014, 22 (1), 105–115.
(15) Hou, W.-C.; Chowdhury, I.; Goodwin, D. G.; Henderson, W. M.; Fairbrother, D. H.; Bouchard, D.; Zepp, R. G. Photochemical Transformation of Graphene Oxide in Sunlight. Environ. Sci. Technol. 2015, 49 (6), 3435–3443.
(16) Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6 (3), 183–191.
(17) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306 (5696), 666–669.
(18) Wang, X.; Zhi, L.; Tsao, N.; Tomović, Ž.; Li, J.; Müllen, K. Transparent Carbon Films as Electrodes in Organic Solar Cells. Angew. Chem. Int. Ed. 2008, 47 (16), 2990–2992.
(19) Bitounis, D.; Ali-Boucetta, H.; Hong, B. H.; Min, D.-H.; Kostarelos, K. Prospects and challenges of graphene in biomedical applications. Adv. Mater. Deerfield Beach Fla 2013, 25 (16), 2258–2268.
(20) Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Superior Thermal Conductivity of Single-Layer Graphene. Nano Lett. 2008, 8 (3), 902–907.
(21) Paredes, J. I.; Villar-Rodil, S.; Martínez-Alonso, A.; Tascón, J. M. D. Graphene Oxide Dispersions in Organic Solvents. Langmuir 2008, 24 (19), 10560–10564.
(22) Park, S.; Ruoff, R. S. Chemical methods for the production of graphenes. Nat. Nanotechnol. 2009, 4 (4), 217–224.
(23) Perreault, F.; Faria, A. F. de; Elimelech, M. Environmental applications of graphene-based nanomaterials. Chem. Soc. Rev. 2015.
(24) Hou, W.-C.; Chowdhury, I.; Goodwin, D. G.; Henderson, W. M.; Fairbrother, D. H.; Bouchard, D.; Zepp, R. G. Photochemical Transformation of Graphene Oxide in Sunlight. Environ. Sci. Technol. 2015, 49 (6), 3435–3443.
(25) Chowdhury, I.; Hou, W.-C.; Goodwin, D.; Henderson, M.; Zepp, R. G.; Bouchard, D. Sunlight Affects Aggregation and Deposition of Graphene Oxide in the Aquatic Environment. Water Res.
(26) Zhou, X.; Zhang, Y.; Wang, C.; Wu, X.; Yang, Y.; Zheng, B.; Wu, H.; Guo, S.; Zhang, J. Photo-Fenton Reaction of Graphene Oxide: A New Strategy to Prepare Graphene Quantum Dots for DNA Cleavage. ACS Nano 2012, 6 (8), 6592–6599.
(27) Ponomarenko, L. A.; Schedin, F.; Katsnelson, M. I.; Yang, R.; Hill, E. W.; Novoselov, K. S.; Geim, A. K. Chaotic Dirac Billiard in Graphene Quantum Dots. Science 2008, 320 (5874), 356–358.
(28) Girit, Ç. Ö.; Meyer, J. C.; Erni, R.; Rossell, M. D.; Kisielowski, C.; Yang, L.; Park, C.-H.; Crommie, M. F.; Cohen, M. L.; Louie, S. G.; et al. Graphene at the Edge: Stability and Dynamics. Science 2009, 323 (5922), 1705–1708.
(29) Bacon, M.; Bradley, S. J.; Nann, T. Graphene Quantum Dots. Part. Part. Syst. Charact. 2014, 31 (4), 415–428.
(30) Ishii, S.; Sadowsky, M. J. Escherichia coli in the Environment: Implications for Water Quality and Human Health. Microbes Environ. 2008, 23 (2), 101–108.
(31) Standards, N. C. for C. L. Methods for Determining Bactericidal Activity of Antimicrobial Agents: Approved Guideline; NCCLS, 1999.
(32) Rispoli, F.; Angelov, A.; Badia, D.; Kumar, A.; Seal, S.; Shah, V. Understanding the toxicity of aggregated zero valent copper nanoparticles against Escherichia coli. J. Hazard. Mater. 2010, 180 (1–3), 212–216.
(33) Morones, J. R.; Elechiguerra, J. L.; Camacho, A.; Holt, K.; Kouri, J. B.; Ramírez, J. T.; Yacaman, M. J. The bactericidal effect of silver nanoparticles. Nanotechnology 2005, 16 (10), 2346.
(34) Tsuang, Y.-H.; Sun, J.-S.; Huang, Y.-C.; Lu, C.-H.; Chang, W. H.-S.; Wang, C.-C. Studies of Photokilling of Bacteria Using Titanium Dioxide Nanoparticles. Artif. Organs 2008, 32 (2), 167–174.
(35) Jiang, W.; Mashayekhi, H.; Xing, B. Bacterial toxicity comparison between nano- and micro-scaled oxide particles. Environ. Pollut. 2009, 157 (5), 1619–1625.
(36) Wang, Z.; Lee, Y.-H.; Wu, B.; Horst, A.; Kang, Y.; Tang, Y. J.; Chen, D.-R. Anti-microbial activities of aerosolized transition metal oxide nanoparticles. Chemosphere 2010, 80 (5), 525–529.
(37) Li, Q.; Mahendra, S.; Lyon, D. Y.; Brunet, L.; Liga, M. V.; Li, D.; Alvarez, P. J. J. Antimicrobial nanomaterials for water disinfection and microbial control: Potential applications and implications. Water Res. 2008, 42 (18), 4591–4602.
(38) Gurunathan, S.; Han, J. W.; Dayem, A. A.; Eppakayala, V.; Kim, J.-H. Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa. Int. J. Nanomedicine 2012, 7, 5901–5914.
(39) Musico, Y. L. F.; Santos, C. M.; Dalida, M. L. P.; Rodrigues, D. F. Surface Modification of Membrane Filters Using Graphene and Graphene Oxide-Based Nanomaterials for Bacterial Inactivation and Removal. ACS Sustain. Chem. Eng. 2014, 2 (7), 1559–1565.
(40) Chen, J.; Peng, H.; Wang, X.; Shao, F.; Yuan, Z.; Han, H. Graphene oxide exhibits broad-spectrum antimicrobial activity against bacterial phytopathogens and fungal conidia by intertwining and membrane perturbation. Nanoscale 2014, 6 (3), 1879–1889.
(41) Li, Y.; Yuan, H.; Bussche, A. von dem; Creighton, M.; Hurt, R. H.; Kane, A. B.; Gao, H. Graphene microsheets enter cells through spontaneous membrane penetration at edge asperities and corner sites. Proc. Natl. Acad. Sci. 2013, 110 (30), 12295–12300.
(42) Romero-Vargas Castrillón, S.; Perreault, F.; de Faria, A. F.; Elimelech, M. Interaction of Graphene Oxide with Bacterial Cell Membranes: Insights from Force Spectroscopy. Environ. Sci. Technol. Lett. 2015, 2 (4), 112–117.
(43) Gurunathan, S.; Han, J. W.; Dayem, A. A.; Eppakayala, V.; Park, M.-R.; Kwon, D.-N.; Kim, J.-H. Antibacterial activity of dithiothreitol reduced graphene oxide. J. Ind. Eng. Chem. 2013, 19 (4), 1280–1288.
(44) Akhavan, O.; Ghaderi, E.; Esfandiar, A. Wrapping Bacteria by Graphene Nanosheets for Isolation from Environment, Reactivation by Sonication, and Inactivation by Near-Infrared Irradiation. J. Phys. Chem. B 2011, 115 (19), 6279–6288.
(45) Mejías Carpio, I. E.; Santos, C. M.; Wei, X.; Rodrigues, D. F. Toxicity of a polymer-graphene oxide composite against bacterial planktonic cells, biofilms, and mammalian cells. Nanoscale 2012, 4 (15), 4746–4756.
(46) Dallavalle, M.; Calvaresi, M.; Bottoni, A.; Melle-Franco, M.; Zerbetto, F. Graphene Can Wreak Havoc with Cell Membranes. ACS Appl. Mater. Interfaces 2015, 7 (7), 4406–4414.
(47) Hummers, W. S.; Offeman, R. E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80 (6), 1339–1339.
(48) Lyon, D. Y.; Fortner, J. D.; Sayes, C. M.; Colvin, V. L.; Hughes, J. B. Bacterial cell association and antimicrobial activity of a C60 water suspension. Environ. Toxicol. Chem. 2005, 24 (11), 2757–2762.
(49) Wang, A.; Pu, K.; Dong, B.; Liu, Y.; Zhang, L.; Zhang, Z.; Duan, W.; Zhu, Y. Role of surface charge and oxidative stress in cytotoxicity and genotoxicity of graphene oxide towards human lung fibroblast cells. J. Appl. Toxicol. 2013, 33 (10), 1156–1164.
(50) Horst, A. M.; Vukanti, R.; Priester, J. H.; Holden, P. A. An Assessment of Fluorescence- and Absorbance-Based Assays to Study Metal-Oxide Nanoparticle ROS Production and Effects on Bacterial Membranes. Small 2013, 9 (9–10), 1753–1764.
(51) Berney, M.; Hammes, F.; Bosshard, F.; Weilenmann, H.-U.; Egli, T. Assessment and Interpretation of Bacterial Viability by Using the LIVE/DEAD BacLight Kit in Combination with Flow Cytometry. Appl. Environ. Microbiol. 2007, 73 (10), 3283–3290.
(52) LIVE/DEAD BacLight Bacterial Viability Kit, for microscopy - Thermo Fisher Scientific https://www.thermofisher.com/order/catalog/product/L7007 (accessed Apr 8, 2016).
(53) Kang, S.; Pinault, M.; Pfefferle, L. D.; Elimelech, M. Single-Walled Carbon Nanotubes Exhibit Strong Antimicrobial Activity. Langmuir 2007, 23 (17), 8670–8673.
(54) Kang, S.; Herzberg, M.; Rodrigues, D. F.; Elimelech, M. Antibacterial Effects of Carbon Nanotubes: Size Does Matter! Langmuir 2008, 24 (13), 6409–6413.