簡易檢索 / 詳目顯示

研究生: 胡桓睿
Hu, Huan-Jui
論文名稱: 一個時序偏移不敏感之十位元每秒取樣六億次雙通道逐漸趨近式類比數位轉換器
A 10-bit 600-MS/s 2x-Interleaved Timing-Skew Insensitive Successive-Approximation Analog-to-Digital Converter
指導教授: 張順志
Chang, Soon-Jyh
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 134
中文關鍵詞: 類比數位轉換器逐漸趨近式時間交錯式子範圍循環展開時序偏移
外文關鍵詞: analog-to-digital converter (ADC), successive-approximation register (SAR), time-interleaved (TI), sub-range, loop-unrolled, timing-skew
相關次數: 點閱:125下載:22
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一個不敏感於時序偏移的10位元每秒取樣六億次的雙通道逐漸趨近式類比數位轉換器。透過結合子範圍架構(Sub-range)和多比較器架構(Multi-comparator)來實做出操作在高速的子通道,並且兩者架構所產生出來的錯誤量可以透過調整冗餘演算法(Redundancy Algorithm)來容忍。憑藉所提出的高速子通道架構,每秒取樣六億次的規格僅需要兩個子通道即能達成,至於雙通道間的時序偏移(Timing-skew)則利用本論文所改良的取樣與保持電路(Track-and-Hold Circuit)盡可能地減少,因此本架構並不需要使用任何代價高昂的時序偏移校正引擎(Calibration Engine)。
    本設計以台積電40奈米CMOS製程實作測試晶片,其核心電路面積佔0.0963mm2。當晶片操作在輸入電壓1.1伏特與取樣速度六億次時,測試結果顯示本晶片在低輸入頻率下能夠達到56.98 dB的失真比(SNDR),而在奈奎斯特(Nyquist-rate)輸入頻率下,可以達到46.6 dB的失真比,其換算得到的轉換效率分別為21.2 fJ/conversion-step及68.5 fJ/conversion-step。因時序偏移所產生出的錯誤在奈奎斯特輸入頻率下約為 -75.03dB,其所估計的雙通道間時序偏移小至94 fs。

    This thesis presents a 10-bit 600-MS/s 2-way interleaved successive-approximation register (SAR) analog-to-digital converter (ADC) which is insensitive to the timing-skew. The sub-range and multi-comparator architecture are adopted to implement the high speed sub-channel and the errors induced from this configuration are tolerated by manipulating the redundancy algorithm. Thanks to the high speed sub-channel, the sampling rate of 600-MS/s is achieved with merely two channels and the effect of timing-skew is well mitigated with the modified Track-and-Hold Circuit. Hence, the costly timing-skew calibration engine is no longer required in this work.
    The proof-of-concept prototype was fabricated in a TSMC 40-nm CMOS technology, of which the core circuits cover an area of 0.0963mm2. As the prototype operates at a supply voltage of 1.1-V and sampling rate of 600-MS/s, the measurement result shows the prototype achieves 56.98 dB SNDR with low input frequency and 46.6 dB SNDR with input frequency up to Nyquist-rate. Accordingly, the Figure of Merit (FoM) are 21.2 fJ/conversion-step and 68.5 fJ/conversion-step, respectively. The tone induced by timing-skew error is -75.03 dB with a Nyquist-rate input, for which the timing-skew between sub-channels is estimated to be as low as 94 fs.

    摘 要 III Abstract IV List of Tables X List of Figures XI Chapter 1 Introduction 1 1.1 Background 1 1.2 Time-interleaved ADC 4 1.3 Organization 6 Chapter 2 High-speed SAR ADC 7 2.1 The Basics of SAR ADCs 7 2.2 Speed Limitation 9 2.2.1 Comparison Time 11 2.2.2 Comparator Reset Time 14 2.2.3 DAC Settling Time 15 2.2.4 Logic Delay 17 2.3 Techniques of Speed Enhancement 19 2.3.1 Asynchronous Timing Control 19 2.3.2 Control Logic Design 22 2.3.3 Sub-range Architecture 26 2.3.4 Multi-comparator Architecture 31 2.3.5 Non-binary Algorithm 33 Chapter 3 Time-interleaved ADC 40 3.1 Analysis of Time-interleaved ADCs 41 3.1.1 Sampling in Time and Frequency Domain 41 3.1.2 Mismatches between Channels 48 3.1.3 The Effect of Channel Errors 49 3.2 Techniques to Mitigate The Offset and Gain Error 57 3.2.1 Offset Calibration 59 3.2.2 Gain Calibration 60 3.3 Methods to Alleviate Timing-skew Error 61 3.3.1 Two-Rank Track-and-Hold 61 3.3.2 Timing-skew Calibration 63 3.3.3 Global Clock Technique 74 Chapter 4 A 10-bit 600-MS/s 2x-interleaved Timing-skew insensitive SAR ADC 77 4.1 Introduction 77 4.2 Proposed Architecture 79 4.2.1 Hybrid SAR ADC with Loop-unrolled Technique 79 4.2.2 Timing-skew Insensitive Track-and-Hold Circuit 82 4.3 Design Consideration 86 4.3.1 Switching Methods 86 4.3.2 Required Error Tolerance Range 88 4.4 Circuit Implementation 91 4.4.1 Bootstrapped Switch 91 4.4.2 Dynamic Comparators 93 4.4.3 Phase Generator 96 4.4.4 Digital Control Logic Circuits 97 4.4.5 Capacitive DAC 101 Chapter 5 Simulation and Measurement Results 104 5.1 Layout and Chip Floor Plan 104 5.2 Simulation Results 107 5.3 Die Micrograph and Measurement Setup 111 5.4 Measurement Results 115 Chapter 6 Conclusion and Future Works 122 Bibliography 126  

    [1] B. Murmann, “ADC Performance Survey 1997-2018,” [Online]. Available: http://web.stanford.edu/~murmann/adcsurvey.html.
    [2] D. Kumar, “Calibration of Sampling Clock Skew in High-Speed, High-Resolution Time-Interleaved ADCs,” Massachusetts Institute of Technology, June. 2015.
    [3] W. Black and D. Hodges, "Time interleaved converter arrays," IEEE J. Solid-State Circuits, vol. 15, pp. 1022-1029, Dec. 1980.
    [4] J. L. McCreary et al., “All-MOS charge distribution analog-to-digital conversion techniques–part I,” IEEE J. Solid-State Circuits, vol. SSC10, no. 6, pp. 371379, Dec. 1975.
    [5] S. P. Astgimath, “A low noise, low power dynamic amplifier with common mode detect and a low power, low noise comparator for pipelined SAR-ADC,” Delft University of Technology, Aug. 2012.
    [6] T. Kobayashi et al., ‘‘A current-controlled latch sense amplifier and a static power-saving input buffer for low-power architecture,’’ IEEE J. Solid-State Circuits, vol. 28, no. 4, pp. 523–527, April 1993.
    [7] B. Wicht et al., “Yield and speed optimization of a latch-type voltage sense amplifier,” IEEE J. Solid-State Circuits, vol. 39, no. 7, pp. 11481158, Jul. 2004.
    [8] P. Nuzzo et al., “Noise analysis of regenerative comparators for reconfigurable ADC architectures,” IEEE Trans. Circuits and Syst. I, vol. 55, no. 6, pp. 1441–1454, Jun. 2008.
    [9] Asad Abidi et al., “Understanding the regenerative comparator circuit,” in Proc. IEEE Custom Integrated Circuits Conference (CICC), 2014, pp. 1–8.
    [10] C.-C. Liu et al., “A 10-bit 50-MS/s SAR ADC with a monotonic capacitor switching procedure,” IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 731740, Dec. 2010.
    [11] Y. Zhu et al., “A 10-bit 100-MS/s reference-free SAR ADC in 90 nm CMOS,” IEEE J. Solid-State Circuits, vol. 45, pp. 1111–1121, Jun. 2010.
    [12] R. Kapusta et al., “A 14b 80MS/s SAR ADC with 73.6dB SNDR in 65nm CMOS,” in Proc. IEEE International Solid-State Circuits Conference Dig. Tech. Papers (ISSCC), Feb. 2013, pp. 472–473.
    [13] J.-H. Tsai et al., ‘‘A 1-V, 8b, 40MS/s, 113μW Charge-Recycling SAR ADC with a 14μW Asynchronous Controller,’’ in IEEE Symp. VLSI Circuits (SOVC) Dig. Tech. Papers, June 2011, pp. 264–265.
    [14] G.-Y. Huang et al., “A 10 b 200 MS/s 0.82 mW SAR ADC in 40 nm CMOS,” in Proc. IEEE Asian Solid-State Circuits Conference Dig. Tech. Papers (A-SSCC), Nov. 2013. pp. 289–292.
    [15] Hung-Yen Tai et al., “A 0.85fJ/conversion-step 10b 200KS/s Subranging SAR ADC in 40nm CMOS,” in Proc. IEEE International Solid-State Circuits Conference Dig. Tech. Papers (ISSCC), Feb. 2014, pp. 196-198.
    [16] Y.-S. Hu et al., “A 0.6V 6.4fJ/conversion-step 10-bit 150MS/s sub-ranging SAR ADC in 40nm CMOS,” in Proc. IEEE Asian Solid-State Circuits Conference Dig. Tech. Papers (A-SSCC), 2014, pp. 81−84.
    [17] Y.-Z. Lin et al., “A 9-bit 150-MS/s 1.53-mW subranged SAR ADC in 90-nm CMOS,” in IEEE Symp. VLSI Circuits (SOVC) Dig. Tech. Papers, Jun. 2010, pp. 243–244.
    [18] S.S. Wong et al,“A 2.3mW 10-bit 170MS/s Two-Step Binary-Search Assisted TimeInterleaved SAR ADC”, in Proc. IEEE Custom Integrated Circuits Conference (CICC), Apr. 2012
    [19] C.-C. Liu et al., “A 0.35mW 12b 100MS/s SAR-assisted digital slope ADC in 28nm CMOS,” in Proc. IEEE International Solid-State Circuits Conference Dig. Tech. Papers (ISSCC), Feb. 2016, pp. 462–463.
    [20] Y. J. Chen et al., “A 2.02–5.16 fJ/conversion step 10-bit hybrid coarse-fine SAR ADC with time-domain quantizer in 90 nm CMOS,” IEEE J. Solid-State Circuits, vol. 51, no. 2, pp. 357–364, Feb. 2016.
    [21] A. Sanyal et al., “A 18.5-fJ/step VCO-based 0–1 MASH ΔΣ ADC with digital background calibration” in IEEE Symp. VLSI Circuits (SOVC) Dig. Tech. Papers, June 2016.
    [22] J. P. Mathew et al., “A 12-bit 200-MS/s 3.4-mW CMOS ADC with 0.85-V supply,” in IEEE Symp. VLSI Circuits (SOVC) Dig. Tech. Papers, 2015, pp. C66–C67
    [23] Y. Chae et al., “A 6.3 W 20 bit incremental zoom-ADC with 6 ppm INL and 1 V offset,” IEEE J. Solid-State Circuits, vol. 48, no. 12, pp. 3019–3027, Dec. 2013.
    [24] B. Gnen et al., “15.7 A 1.65mW 0.16mm2 dynamic zoom-ADC with 107.5dB DR in 20kHz BW,” in Proc. IEEE International Solid-State Circuits Conference Dig. Tech. Papers (ISSCC), Jan. 2016, pp. 282–283.
    [25] L. Kull et al., “A 3.1mW 8b 1.2GS/s single-channel asynchronous SAR ADC with alternate comparators for enhanced speed in 32nm digital SOI CMOS,” in Proc. IEEE International Solid-State Circuits Conference Dig. Tech. Papers (ISSCC), 2013, pp. 468−469.
    [26] G. Van der Plas et al., ‘‘A 150 MS/s 133 W 7 bit ADC in 90 nm Digital CMOS,’’ IEEE J. Solid-State Circuits, vol. 43, no. 12, pp. 2631–2640, Dec. 2008.
    [27] Tao Jiang et al., “Single-channel, 1.25-GS/s, 6-bit, loop-unrolled asynchronous SAR ADC in 40nm CMOS,” in Proc. IEEE Custom Integrated Circuits Conference (CICC), 2010, pp. 1−4.
    [28] V. Giannini et al., “An 820 µW 9b 40 MS/s noise-tolerant dynamic-SAR ADC in 90 nm digital CMOS,” in Proc. IEEE International Solid-State Circuits Conference Dig. Tech. Papers (ISSCC), Feb. 2008, pp. 238–239.
    [29] T. Waho et al., “Non-binary successive approximation analog-to-digital converters: A survey,” in Proc. IEEE Int. Symp. Multiple-Valued Logic (ISMVL), 2014, pp. 73–78.
    [30] W. Liu et al., “A 12b 22.5/45MS/s 3.0mW 0.059 mm2 CMOS SAR ADC achieving over 90 dB SFDR,” in Proc. IEEE International Solid-State Circuits Conference Dig. Tech. Papers (ISSCC), 2010, pp. 380−381.
    [31] W. Liu et al., “A 12-bit 50-MS/s 3.3 mW SAR ADC with background digital calibration,” in Proc. IEEE Custom Integrated Circuits Conference (CICC), 2012, pp. 1–4.
    [32] F. Kuttner et al., “A 1.2-V 10-b 20-Msample/s nonbinary successive approximation ADC in 0.13-µm CMOS,” in Proc. IEEE International Solid-State Circuits Conference Dig. Tech. Papers (ISSCC), 2002, pp. 176−177.
    [33] S.-W. M. Chen et al., “A 6-bit 600-MS/s 5.3mW asynchronous ADC in 0.13 µm CMOS,” IEEE J. Solid-State Circuits, vol. 41, no. 12, pp. 26692680, Dec. 2006.
    [34] T. Ogawa et al., “SAR ADC algorithm with redundancy,” in Proc. IEEE Asia Pacific Conf. Circuits Syst. (APCCAS), Nov. 2008, pp. 268–271.
    [35] T. Ogawa et al., “Non-binary SAR ADC with digital error correction for low power applications,” in Proc. IEEE Asia Pacific Conf. Circuits Syst. (APCCAS), Dec. 2010, pp. 196199.
    [36] H.-Y. Tai et al., “A 3.2 fJ/c.-s. 0.35 V 10 b 100 kS/s SAR ADC in 90 nm CMOS,” in IEEE Symp. VLSI Circuits (SOVC) Dig. Tech. Papers, Jun. 2012, pp. 92–93.
    [37] Toru Okazaki, et al., “A Design Technique for a High-speed SAR ADC Using Non-binary Search Algorithm and Redundancy,” in Proc. IEEE Asia Pacific Microwave Conference (APMC), Dec. 2013, pp. 506508.
    [38] Hyeok-Ki Hong et al., “A 7b 1GS/s 7.2mW nonbinary 2b/cycle SAR ADC with register-to-DAC direct control,” in Proc. IEEE Custom Integrated Circuits Conf. (CICC), 2012, pp. 1−4.
    [39] C.-C. Liu et al., “A 10b 100MS/s 1.13mW SAR ADC with binary scaled error compensation,” in Proc. IEEE International Solid-State Circuits Conference Dig. Tech. Papers (ISSCC), Feb. 2010, pp. 386–387.
    [40] P. Harpe et al., “A 7-to-10b 0-to-4MS/s flexible SAR ADC with 6.5-to-16fJ/conversion-step,” in Proc. IEEE International Solid-State Circuits Conference Dig. Tech. Papers (ISSCC), 2012, pp. 472−474
    [41] M.-J. E. Lee et al., ‘‘Low-power area-efficient high-speed I/O circuit techniques,’’ IEEE J. Solid-State Circuits, vol. 35, no. 11, pp. 1591–1599, Nov. 2000.
    [42] B. Sung et al., “A 6 bit 2 GS/s flash-assisted time-interleaved (FATI) SAR ADC with background offset calibration,” in Proc. IEEE Asian Solid-State Circuits Conference Dig. Tech. Papers (A-SSCC), Nov. 2013, pp. 281–284.
    [43] M. El-Chammas et al., “A 12-GS/s 81-mW 5-bit Time-Interleaved Flash ADC With Background Timing Skew Calibration,” IEEE J. Solid-State Circuits, vol. 46, no. 4, pp. 838-847, Mar. 2011.
    [44] A. Nazemi et al., “A 10.3 GS/s 6 bit (5.1 ENOB at Nyquist) time-interleaved pipelined ADC using open-loop amplifiers and digital calibration in 90 nm CMOS,” IEEE Symp. VLSI Circuits (SOVC) Dig. Tech. Papers, 2008, pp. 18–19.
    [45] C.-H. Chan et al, “A 6 b 5 GS/s 4 interleaved 3 b/cycle SAR ADC,” IEEE J. Solid-State Circuits, vol. 51, no. 2, pp. 365–377, Feb. 2016
    [46] K. Poulton et al., “A 20 GS/s 8 b ADC with a 1 MB memory in 0.18 /spl mu/m CMOS,” in Proc. IEEE International Solid-State Circuits Conference Dig. Tech. Papers (ISSCC), Feb. 2003, pp. 318-496
    [47] P. J. A. Harpe et al., “A 0.47-1.6mW 5-bit 0.5-1 GS/s Time-Interleaved SAR ADC for Low-Power UWB Radio,” IEEE J. Solid-State Circuits, vol. 47, no. 7, pp. 1594–1602, July. 2012.
    [48] D. Stepanovic et al., ”A 2.8 GS/s 44.6 mW time-interleaved ADC achieving 50.9 dB SNDR and 3 dB effective resolution bandwidth of 1.5 GHz in 65 nm CMOS”, IEEE J. Solid-State Circuits, vol. 48, no. 4, pp. 971-982, Jan. 2013.
    [49] P. Harpe et al., “Calibration of Ultra Low-Power Time-Interleaved SAR ADCs,” in Proc. IEEE New Circuits and Systems Conference Dig. Tech. Papers (NEWCAS), 2012, pp. 361364.
    [50] J. A. McNeill et al., “Split ADC calibration for all-digital correction of time-interleaved ADC errors,” IEEE Trans. Circuits and Systems I: Express Briefs, vol. 56, no. 5, pp. 344–348, May 2009.
    [51] C. Hsu et al., “An 11b 800MS/s Time-interleaved ADC with,” in Proc. IEEE International Solid-State Circuits Conference Dig. Tech. Papers (ISSCC), Feb. 2007, pp. 464-615
    [52] W. Liu et al., “A 600MS/s 30mW 0.13μm CMOS ADC Array Achieving Over 60dB SFDR with Adaptive Digital Equalization,” in Proc. IEEE International Solid-State Circuits Conference Dig. Tech. Papers (ISSCC), Feb. 2009, pp. 82-83.
    [53] K. Doris et al., “A 480mW 2.6GS/s 10b 65nm CMOS Time-Interleaved ADC with 48.5db SNDR up to Nyquist,” in Proc. IEEE International Solid-State Circuits Conference Dig. Tech. Papers (ISSCC), Feb. 2011, pp. 180-182.
    [54] E. Jassen et al., “An 11b 3.6GS/s Time-Interleaved SAR ADC in 65nm CMOS,” in Proc. IEEE International Solid-State Circuits Conference Dig. Tech. Papers (ISSCC), Feb. 2013, pp. 464-465.
    [55] B. Setterberg et al., “A 14b 2.5GS/s 8-Way-Interleaved Pipelined ADC with Background Calibration and Digital Dynamic Linearity Correction,” in Proc. IEEE International Solid-State Circuits Conference Dig. Tech. Papers (ISSCC), Feb. 2013, pp. 466-467
    [56] S. Le Tual et al., “A 20GHz-BW 6b 10GS/s 32mW Time-Interleaved SAR ADC with Master T&H in 28nm UTBB FDSOI Technology,” in Proc. IEEE International Solid-State Circuits Conference Dig. Tech. Papers (ISSCC), Feb. 2014, pp. 382-383
    [57] L. Kull et al., “A 24-to-72GS/s 8b Time-Interleaved SAR ADC with 2.0-to-3.3pJ/conversion and >30dB SNDR at Nyquist in 14nm CMOS FinFET,” in Proc. IEEE International Solid-State Circuits Conference Dig. Tech. Papers (ISSCC), Feb. 2018, pp. 358-360
    [58] C. Huang et al., “A CMOS 6-Bit 16-GS/s Time-Interleaved ADC Using Digital Background Calibration Techniques,” IEEE J. Solid-State Circuits, vol. 46, no. 4, pp. 848-858, Apr. 2013.
    [59] C. Wang et al., “A Multiphase Timing-Skew Calibration Technique Using Zero-Cross Detection,” IEEE Trans. Circuits and Systems I: Regular Paper, vol. 56, no. 6, pp. 1102-1114, June. 2009.
    [60] B. Razavi, “Design Consideration for Interleaved ADCs,” IEEE J. Solid-State Circuits, vol. 48, no. 8, pp. 1806–1817, May. 2013.
    [61] S. Lee et al., “A 1GS/s 10b 18.9mW Time-Interleaved SAR ADC with Background Timing-Skew Calibration,” in Proc. IEEE International Solid-State Circuits Conference Dig. Tech. Papers (ISSCC), Feb. 2014, pp. 384–385
    [62] B. Sung et al., “A 21fJ/conv-step 9 ENOB 1.6GS/s 2× Time-Interleaved FATI SAR ADC with Background Offset and Timing-Skew Calibration in 45nm CMOS,” in Proc. IEEE International Solid-State Circuits Conference Dig. Tech. Papers (ISSCC), Feb. 2015, pp. 1–3.
    [63] H. Wei et al., “An 8 bit 4 GS/s 120 mW CMOS ADC,” IEEE J. Solid-State Circuits, vol. 49, no. 8, pp. 1751–1761, Aug. 2014.
    [64] V. H-C. Chen et al., “A 69.5mW 20GS/s 6b time-interleaved ADC with embedded time-to-digital calibration in 32nm CMOS SOI,” in Proc. IEEE International Solid-State Circuits Conference Dig. Tech. Papers (ISSCC), pp. 380–381, Feb. 2014.
    [65] S. M. Jamal et al., "A 10-b 120-Msample/s time-interleaved analog-to-digital converter with digital background calibration," IEEE J. Solid-State Circuit, vol. 37, no. 12, pp. 1618-1627, 2002.
    [66] N. Le Dortz et al., "A 1.62GS/s timeinterleaved SAR ADC with digital background mismatch calibration achieving interleaving spurs below 70dBFS," in Proc. IEEE International Solid-State Circuits Conference Dig. Tech. Papers (ISSCC), vol. 57, pp. 386-387, 2014.
    [67] C. Lin et al., " A 10-bit 2.6-GS/s Time-Interleaved SAR ADC With a Digital-Mixing Timing-Skew Calibration Technique," IEEE J. Solid-State Circuit, vol. 53, no. 5, pp. 1508-1517, 2018.
    [68] Y. Zhu et al., “An 11b 900 MS/s Time-Interleaved Sub-ranging Pipelined-SAR ADC,” in Proc. IEEE Eur. Solid-State Circuits Conference Dig. Tech. Papers (ESSCIRC), Sep. 2014, pp. 211-214
    [69] H. J. Jeon et al., “A CMOS low-power low-offset and high-speed fully dynamic latched comparator,” in Proc. IEEE Int. SOC Conference, 2010, pp. 285–288.
    [70] C. C. Liu et al., “A 10-bit 320-MS/s low-cost SAR ADC for IEEE 802.11ac applications in 20-nm CMOS,” in Proc. IEEE Asian Solid-State Circuits Conference Dig. Tech. Papers (A-SSCC), Nov. 2014, pp. 77–80.
    [71] X. Gao et al., "Advantages of shift registers over DLLs for flexible low jitter multiphase clock generation," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 55, no. 3, pp. 244-248, 2008.
    [72] G.-Y. Huang et al., “A 10 b 200 MS/s 0.82 mW SAR ADC in 40 nm CMOS,” in Proc. IEEE Asian Solid-State Circuits Conference Dig. Tech. Papers (A-SSCC), Nov. 2013. pp. 289–292.
    [73] L. Qiu et al., “A 10-bit 1GS/s 4-way TI SAR ADC with tap-interpolated FIR filter based time skew calibration” in Proc. IEEE Asian Solid-State Circuits Conference Dig. Tech. Papers (A-SSCC), Nov. 2016. pp. 77–80.
    [74] J. Song et al., “A 10-b 800MS/s Time-Interleaved SAR ADC with Fast Timing-Skew Calibration” in Proc. IEEE Asian Solid-State Circuits Conference Dig. Tech. Papers (A-SSCC), Nov. 2016. pp. 73–76.

    下載圖示 校內:立即公開
    校外:2019-07-01公開
    QR CODE