簡易檢索 / 詳目顯示

研究生: 陳冠學
Chen, Guan-Shiue
論文名稱: 孤立波通過透水潛堤之試驗研究
Experimental Study of Solitary Waves Propagating Over a Permeable Submerged Rectangular Obstacle
指導教授: 蕭士俊
Hsiao, Shih-Chun
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 89
中文關鍵詞: 質點影像測速儀孤立波透水潛堤滑移速度紊流動能
外文關鍵詞: Particle Image Velocimetry(PIV), solitary wave, permeable submerged obstacle, slip velocity, turbulence kinetic energy
相關次數: 點閱:110下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究應用質點影像測速儀 (Particle Image Velocimetry, PIV) 於水槽中量測不同波高與水深比的孤立波通過透水潛堤之流場、渦流場與渦度場。當孤立波通過透水潛堤時,會在上游堤頂與潛堤下游因流體分離現象而產生渦流,上游堤頂的渦流強度隨不同波高與水深比增加而增強。流體在潛堤堤頂邊緣因透水效應而產生滑移速度,波高與水深比的不同比對滑移速度的大小並無顯著的影響,且孤立波通過潛堤後,堤頂流速在不同波高與水深比條件下均趨於相同的大小。潛堤下游側主要渦流的渦流強度隨時間的演變而不斷增強與減弱,並無明顯的消散現象,且在不同波高與水深比條件下均有相近的趨勢,此與Chang(1999)量測孤立波通過不透水潛堤的結果明顯不同。
    孤立波通過透水潛堤時,上游堤頂的主要渦流的尺度大小小於下游側的主要渦流,當孤立波為於潛堤上方時,下游堤頂邊緣的紊流強度達上游堤頂的紊流強度98%,此與Chang et al.(2001)用k-ε紊流模式模擬孤立波通過不透水潛堤,下游堤頂邊緣的紊流強度僅達上游堤頂的紊流強度33%有明顯不同的結果。

    This thesis investigates the interaction between solitary wave and permeable submerged obstacle by Particle Image Velocimetry. The observations include velocity field, vortex field and turbulence kinetic energy. When solitary wave passes through the obstacle, the vortex generate both at weatherside and leeside of obstacle. The vortex strength increase with the ratio of wave height and water depth. Fluid at the edge of top obstacle would generate “slip velocity” because of flooding phenomenon. There is no clear relationship between the ratio of wave height and water depth and slip velocity. When solitary wave passes and far away the obstacle, the velocity of different ratio of wave height and water depth approach to the same strength. Besides, leeside vortex strength increases and decreases with time, and there is no clear dissipation phenomena of vortex strength. The result has very close trend of different ratio of wave height and water depth, but this result is different with Chang(1999).
    When solitary wave passes through the obstacle, the size of weatherside vortex is smaller than leeside vortex. The turbulence strength at the corner of leeside obstacle is 98% per the turbulence strength of weatherside obstacle when solitary wave is on the top of obstacle,. This result is very different with the result of Chang et al.(2001)which turbulence strength at the corner of leeside obstacle is only 33% per the turbulence strength of weatherside obstacle.

    摘要 I Abstract II 誌謝 III 圖目錄 VIII 表目錄 X 符號表 XI 第一章 緒論 1 1-1 研究目的與動機 1 1-2 文獻回顧 3 1-2-1 孤立波理論 3 1-2-2 孤立波通過潛沒構造物 4 1-2-3 透水結構的研究 6 1-3 本文架構 7 第二章 實驗設備與測量方法 8 2-1 水槽與造波設備 8 2-2 水位訊號量測 11 2-3 PIV量測系統 12 2-3-1 CCD影像擷取系統(CCD Camera) 12 2-3-2 同步控制系統(Synchronizer) 13 2-3-3 脈衝式雷射系統(Pulse Laser) 13 2-3-4 控制系統與分析軟體 14 2-4 PIV 系統量測原理 15 第三章 實驗條件與分析方法 19 3-1 試驗模型與拍攝範圍 19 3-1-1 試驗模型 19 3-1-2 拍攝範圍 21 3-2 水深、波浪條件與波形驗證 22 3-3 PIV量測系統驗證 26 3-4 渦度定義與分析方法 31 3-5 紊流動能的定義與分析方式 32 3-5-1 紊流動能(turbulence kinetic energy, T.K.E.) 32 3-5-2 試驗重現性 34 第四章 結果與討論 37 4-1 H/h =0.5流場分佈特性 37 4-1-1 流場平均速度與平均渦度 37 4-1-2 堤頂渦流演變 46 4-1-3 堤頂流場分佈特性 51 4-2 不同波高水深比的流場特性比較 56 4-2-1 流場平均速度與平均渦度比較 56 4-2-2 潛堤右側主要渦流的比較分析 57 4-2-3 堤頂斷面速度比較分析 66 4-3 紊流動能 71 4-3-1 H/h = 0.5紊流動能分布特性 71 4-3-2 各波高與水深比的紊流動能比較 74 第五章 結論與建議 82 5-1 結論 82 5-2 建議 83 參考文獻 84 附錄-前人文獻節錄 87

    1. Beji, S., Battjes, J.A., “Experimental investigation of wave propagation over a bar”, Coastal Engineering, vol. 19, pp. 151–162, 1993

    2. Chang, K.A., ”Experimental study of wave breaking and wave-structure interaction”, PhD. Thesis, Cornell University, 1999

    3. Chang, K.A., Liu, P.L.F., “Experimental investigation of turbulence generated by breaking waves in water of intermediate depth” Physics of Fluids, vol. 11(11), pp. 3390-3400, 1999

    4. Chang, K.A., Hsu, T.J., Liu, P.L.F., “Vortex generation and evolution in water waves propagating over a submerged rectangular obstacle, Part I. Solitary waves”, Coastal Engineering , vol. 44, pp. 13-36, 2001

    5. Cox, D.T., Kobayashi, N., “ Identification of intense, intermittent coherent motions under shoaling and breaking waves” Journal of Geophysical Research-Oceans, vol. 105(6), pp. 223-236, 2000

    6. Goring, D. G. “Tsunami: The propagation of long waves onto a shelf.” Rep. No. KH-R-38, W. M. Keck Laboratory of Hydraulics and Water Resources, California Institute of Technology, Pasadena, Calif., 1978

    7. Goring, D. G., “Propagation of long wave onto shelf”, Journal of Waterway, Port, Coastal and Ocean Engineering, vol. 118(1), pp. 43-61, 1990

    8. Grue, J., “Nonlinear water waves at a submerged obstacle or bottom topography”, Journal of Fluid Mechanics, vol. 244, pp. 455–476, 1992

    9. Huang, C. J., Dong, C. M., “On the interaction of a solitary wave and a submerged dike”, Coastal Engineering, vol. 43, pp. 265-286, 2001

    10. Huang, C.J., Chang, H.H., Hwung, H.H., “Structural permeability effects on interaction of a solitary wave and a submerged breakwater”, Coastal Engineering , vol. 49, pp. 1-24, 2003

    11. Kimmoun, O., Branger, H., “A particle images velocimetry investigation on laboratory surf-zone breaking waves over a sloping beach” Journal of Fluid Mechanics, vol. 588, pp. 353-397, 2007

    12. Leu, J.M., Lai, C.J., Chan, H.C., Lee, M.C., “Comparisons of velocity and turbulence field around permeable and non-permeable structure”, Journal of Taiwan Water Conservancy, vol. 53, pp. 46-52, 2005

    13. Lin, P., “A numerical study of solitary wave interaction with rectangular obstacles”, Coastal Engineering, vol. 51, pp. 35-51, 2004

    14. Lin, C., Chang, S.C., Chang, K.A., “Flow visualization on a solitary wave propagating over a submerged rectangular dike”, Ocean Waves Measurement and Analysis, Fifth International Symposium, 2005

    15. Lin, C., Ho, T.C., Chang, S.C., Hsich, S.C., Chang, K.A., “Vortex shedding induced by a solitary wave propagating over a submerged vertical plate”, International Journal of Heat and Fluid Flow, vol. 26, pp. 894-904, 2005

    16. Lin, C., Chang, S.C., Ho, T.C., Chang, K.A., “Laboratory obsetvation of solitary wave propagating over a submerged rectangular dike”, Journal of Engineering Mechanics, vol. , pp. 545-554, 2006

    17. Lin, M.Y., Huang, L.H., “Vortex shedding from a submerged rectangular obstacle attacked by a solitary wave”, Journal of Fluid Mechanics, vol. 651, pp. 503-518, 2010

    18. Liu, P.L.F., Davis, M.H., Downing, S., ”Wave-induced boundary layer flows above and in a permeable bed”, Journal of Fluid Mechanics, vol, pp. 195-218, 1996

    19. Madsen, O. S., Mei, C. C., “The transformation of a solitary wave over an uneven bottom”, Journal of Fluid Mechanics, vol. 39, pp. 781-791, 1969

    20. Melville, W.K., Veron, F., White, C.J., “The velocity field under breaking waves: coherent structures and turbulence” Journal of Fluid Mechanics, vol. 454, pp. 203-233, 2002

    21. Nadaoka, K., Hino, M., Koyano, Y., “Structure of the turbulent flow field underbreaking waves in the surf zone” Journal of Fluid Mechanics, vol. 204, pp. 359-387, 1989

    22. Rey, V., Belzons, M., Guazzelli, E., “Propagation of surface gravity waves over a rectangular submerged bar”, Journal of Fluid Mechanics, vol. 235, pp. 453–479, 1992

    23. Seabra-Santos, F. J., Renound, D. P., Temperville, A. M., “Numerical and experiment study of the transformation of a solitary wave over a shelf or isolated obstacle”, Journal of Fluid Mechanics, vol. 176, pp. 117-134, 1987

    24. Stansby, P.K., Feng, T., “Kinematics and depth-integrated terms in surf zone waves from laboratory measurement” Journal of Fluid Mechanics, vol. 529, pp. 279-310, 2005

    25. Tang, C. J., Chang, J. H., “Flow separation during solitary wave passing over submerged obstacle”, Journal of Hydraulic Engineering, vol. 124, pp. 742-749, 1998

    26. Ting, F.C.K., Kirby, J.T., “Dynamics of surf zone turbulence in a spilling breaker” Coastal Engineering, vol. 27, pp. 131-160, 1996

    27. 林建鋒, 「以PIV量測波浪通過系列潛堤之布拉格效應」, 碩士論文, 國立成功大學水利與海洋工程研究所, 2006

    28. 何宗浚, 「孤立波通過不同長高比之潛沒構造物時周邊渦流流場特性探討」, 博士論文, 國立中興大學土木工程研究所, 2009

    29. 黃志誠, 「碎波帶動力及紊流特性之試驗研究」, 博士論文, 國立成功大學水利與海洋工程研究所, 2010.

    30. 張振禎, 「DIP、PIV及BIV應用於複合式平台之碎波流場特性研究」, 碩士論文, 國立成功大學水利與海洋工程研究所, 2010

    下載圖示 校內:立即公開
    校外:2012-09-01公開
    QR CODE