| 研究生: |
陳冠學 Chen, Guan-Shiue |
|---|---|
| 論文名稱: |
孤立波通過透水潛堤之試驗研究 Experimental Study of Solitary Waves Propagating Over a Permeable Submerged Rectangular Obstacle |
| 指導教授: |
蕭士俊
Hsiao, Shih-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 質點影像測速儀 、孤立波 、透水潛堤 、滑移速度 、紊流動能 |
| 外文關鍵詞: | Particle Image Velocimetry(PIV), solitary wave, permeable submerged obstacle, slip velocity, turbulence kinetic energy |
| 相關次數: | 點閱:110 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究應用質點影像測速儀 (Particle Image Velocimetry, PIV) 於水槽中量測不同波高與水深比的孤立波通過透水潛堤之流場、渦流場與渦度場。當孤立波通過透水潛堤時,會在上游堤頂與潛堤下游因流體分離現象而產生渦流,上游堤頂的渦流強度隨不同波高與水深比增加而增強。流體在潛堤堤頂邊緣因透水效應而產生滑移速度,波高與水深比的不同比對滑移速度的大小並無顯著的影響,且孤立波通過潛堤後,堤頂流速在不同波高與水深比條件下均趨於相同的大小。潛堤下游側主要渦流的渦流強度隨時間的演變而不斷增強與減弱,並無明顯的消散現象,且在不同波高與水深比條件下均有相近的趨勢,此與Chang(1999)量測孤立波通過不透水潛堤的結果明顯不同。
孤立波通過透水潛堤時,上游堤頂的主要渦流的尺度大小小於下游側的主要渦流,當孤立波為於潛堤上方時,下游堤頂邊緣的紊流強度達上游堤頂的紊流強度98%,此與Chang et al.(2001)用k-ε紊流模式模擬孤立波通過不透水潛堤,下游堤頂邊緣的紊流強度僅達上游堤頂的紊流強度33%有明顯不同的結果。
This thesis investigates the interaction between solitary wave and permeable submerged obstacle by Particle Image Velocimetry. The observations include velocity field, vortex field and turbulence kinetic energy. When solitary wave passes through the obstacle, the vortex generate both at weatherside and leeside of obstacle. The vortex strength increase with the ratio of wave height and water depth. Fluid at the edge of top obstacle would generate “slip velocity” because of flooding phenomenon. There is no clear relationship between the ratio of wave height and water depth and slip velocity. When solitary wave passes and far away the obstacle, the velocity of different ratio of wave height and water depth approach to the same strength. Besides, leeside vortex strength increases and decreases with time, and there is no clear dissipation phenomena of vortex strength. The result has very close trend of different ratio of wave height and water depth, but this result is different with Chang(1999).
When solitary wave passes through the obstacle, the size of weatherside vortex is smaller than leeside vortex. The turbulence strength at the corner of leeside obstacle is 98% per the turbulence strength of weatherside obstacle when solitary wave is on the top of obstacle,. This result is very different with the result of Chang et al.(2001)which turbulence strength at the corner of leeside obstacle is only 33% per the turbulence strength of weatherside obstacle.
1. Beji, S., Battjes, J.A., “Experimental investigation of wave propagation over a bar”, Coastal Engineering, vol. 19, pp. 151–162, 1993
2. Chang, K.A., ”Experimental study of wave breaking and wave-structure interaction”, PhD. Thesis, Cornell University, 1999
3. Chang, K.A., Liu, P.L.F., “Experimental investigation of turbulence generated by breaking waves in water of intermediate depth” Physics of Fluids, vol. 11(11), pp. 3390-3400, 1999
4. Chang, K.A., Hsu, T.J., Liu, P.L.F., “Vortex generation and evolution in water waves propagating over a submerged rectangular obstacle, Part I. Solitary waves”, Coastal Engineering , vol. 44, pp. 13-36, 2001
5. Cox, D.T., Kobayashi, N., “ Identification of intense, intermittent coherent motions under shoaling and breaking waves” Journal of Geophysical Research-Oceans, vol. 105(6), pp. 223-236, 2000
6. Goring, D. G. “Tsunami: The propagation of long waves onto a shelf.” Rep. No. KH-R-38, W. M. Keck Laboratory of Hydraulics and Water Resources, California Institute of Technology, Pasadena, Calif., 1978
7. Goring, D. G., “Propagation of long wave onto shelf”, Journal of Waterway, Port, Coastal and Ocean Engineering, vol. 118(1), pp. 43-61, 1990
8. Grue, J., “Nonlinear water waves at a submerged obstacle or bottom topography”, Journal of Fluid Mechanics, vol. 244, pp. 455–476, 1992
9. Huang, C. J., Dong, C. M., “On the interaction of a solitary wave and a submerged dike”, Coastal Engineering, vol. 43, pp. 265-286, 2001
10. Huang, C.J., Chang, H.H., Hwung, H.H., “Structural permeability effects on interaction of a solitary wave and a submerged breakwater”, Coastal Engineering , vol. 49, pp. 1-24, 2003
11. Kimmoun, O., Branger, H., “A particle images velocimetry investigation on laboratory surf-zone breaking waves over a sloping beach” Journal of Fluid Mechanics, vol. 588, pp. 353-397, 2007
12. Leu, J.M., Lai, C.J., Chan, H.C., Lee, M.C., “Comparisons of velocity and turbulence field around permeable and non-permeable structure”, Journal of Taiwan Water Conservancy, vol. 53, pp. 46-52, 2005
13. Lin, P., “A numerical study of solitary wave interaction with rectangular obstacles”, Coastal Engineering, vol. 51, pp. 35-51, 2004
14. Lin, C., Chang, S.C., Chang, K.A., “Flow visualization on a solitary wave propagating over a submerged rectangular dike”, Ocean Waves Measurement and Analysis, Fifth International Symposium, 2005
15. Lin, C., Ho, T.C., Chang, S.C., Hsich, S.C., Chang, K.A., “Vortex shedding induced by a solitary wave propagating over a submerged vertical plate”, International Journal of Heat and Fluid Flow, vol. 26, pp. 894-904, 2005
16. Lin, C., Chang, S.C., Ho, T.C., Chang, K.A., “Laboratory obsetvation of solitary wave propagating over a submerged rectangular dike”, Journal of Engineering Mechanics, vol. , pp. 545-554, 2006
17. Lin, M.Y., Huang, L.H., “Vortex shedding from a submerged rectangular obstacle attacked by a solitary wave”, Journal of Fluid Mechanics, vol. 651, pp. 503-518, 2010
18. Liu, P.L.F., Davis, M.H., Downing, S., ”Wave-induced boundary layer flows above and in a permeable bed”, Journal of Fluid Mechanics, vol, pp. 195-218, 1996
19. Madsen, O. S., Mei, C. C., “The transformation of a solitary wave over an uneven bottom”, Journal of Fluid Mechanics, vol. 39, pp. 781-791, 1969
20. Melville, W.K., Veron, F., White, C.J., “The velocity field under breaking waves: coherent structures and turbulence” Journal of Fluid Mechanics, vol. 454, pp. 203-233, 2002
21. Nadaoka, K., Hino, M., Koyano, Y., “Structure of the turbulent flow field underbreaking waves in the surf zone” Journal of Fluid Mechanics, vol. 204, pp. 359-387, 1989
22. Rey, V., Belzons, M., Guazzelli, E., “Propagation of surface gravity waves over a rectangular submerged bar”, Journal of Fluid Mechanics, vol. 235, pp. 453–479, 1992
23. Seabra-Santos, F. J., Renound, D. P., Temperville, A. M., “Numerical and experiment study of the transformation of a solitary wave over a shelf or isolated obstacle”, Journal of Fluid Mechanics, vol. 176, pp. 117-134, 1987
24. Stansby, P.K., Feng, T., “Kinematics and depth-integrated terms in surf zone waves from laboratory measurement” Journal of Fluid Mechanics, vol. 529, pp. 279-310, 2005
25. Tang, C. J., Chang, J. H., “Flow separation during solitary wave passing over submerged obstacle”, Journal of Hydraulic Engineering, vol. 124, pp. 742-749, 1998
26. Ting, F.C.K., Kirby, J.T., “Dynamics of surf zone turbulence in a spilling breaker” Coastal Engineering, vol. 27, pp. 131-160, 1996
27. 林建鋒, 「以PIV量測波浪通過系列潛堤之布拉格效應」, 碩士論文, 國立成功大學水利與海洋工程研究所, 2006
28. 何宗浚, 「孤立波通過不同長高比之潛沒構造物時周邊渦流流場特性探討」, 博士論文, 國立中興大學土木工程研究所, 2009
29. 黃志誠, 「碎波帶動力及紊流特性之試驗研究」, 博士論文, 國立成功大學水利與海洋工程研究所, 2010.
30. 張振禎, 「DIP、PIV及BIV應用於複合式平台之碎波流場特性研究」, 碩士論文, 國立成功大學水利與海洋工程研究所, 2010