簡易檢索 / 詳目顯示

研究生: 胡宗豪
Hu, Tsung-Hao
論文名稱: 自動發電控制之調頻策略與經濟成本分析
Regulation Strategies and Economic Analysis on the Automatic Generation Control
指導教授: 張簡樂仁
Chang-Chien, Le-Ren
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 114
中文關鍵詞: 負載頻率控制自動發電控制CPS1運轉成本備轉餘裕量
外文關鍵詞: load-frequency control, automatic generation control, CPS1, operating cost, reserve margin
相關次數: 點閱:90下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 頻率的良窳反應出系統安全性與可靠性。對於電力系統運轉而言,負載頻率控制(LFC)的研究是不可缺少的部分。一般而言,大部分的電力公司採用自動發電控制(AGC),以維持系統的供電平衡並穩定系統頻率。LFC效能的好壞取決於電力公司使用AGC的方式,本文提出AGC三項參考效能指標,分別為CPS1、運轉成本與備轉餘裕量,用以評估電力系統運轉的品質。相關的研究方法是利用MATLAB/ Simulink軟體建構出數學模型,以近似台電系統的LFC動態特性。由台電公司實際的系統參數與負載資料,可模擬不同的AGC模式對參考效能指標的重要影響。最後,利用多因素評分優選法找出適合的系統運轉建議,以期望電力調度員在LFC運作上能有更好的成效。

    The supply frequency reflects system security and reliability in the operation power system. The load-frequency control (LFC) is an indispensable study in the system research. In general, most utilities adopt automatic generation control (AGC) to make load-generation balance and thus stabilize the frequency. The performance of the LFC is highly dependent on the way of the utilities making use of the AGC. In this thesis, we propose three referred performance indices of AGC — CPS1, operating cost and reserve margin, respectively, to evaluate the quality of system operation. Relative research method is to use MATLAB/Simulink software to construct a mathematical model to approximate the LFC dynamics of the Taipower system. Taking the real system parameters and load information from Taipower, the simulation program can simulate various AGC modes that have significant influences on the referred performance indices. Finally, a multi-factor score optimization method is utilized to find out the recommended operating portfolio for system operators to make smarter decisions in the LFC.

    摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VII 圖目錄 IX 符號索引 XII 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 1.3 本文貢獻 2 1.4 論文架構 3 第二章 系統頻率控制簡介 5 2.1 前言 5 2.2 發電機組的基本架構 5 2.3 發電機與負載模型 6 2.3.1 發電機模型 6 2.3.2 發電機與負載模型 9 2.4 原動機模型 10 2.5 調速機模型 11 2.5.1 調速機模型的建立 11 2.5.2 機組輸出功率控制 14 2.6 負載頻率控制 15 2.6.1 初級控制 15 2.6.2 頻率響應特性值 16 2.6.3 自動發電控制簡介 17 2.7 發電機組頻率響應比較 19 2.7.1 常見的調速機系統 19 2.7.2 常見的渦輪機系統 21 2.7.3 機組頻率響應比較 22 2.8 本章結論 24 第三章 台電系統AGC性能指標與機組控制模式 25 3.1 前言 25 3.2 控制效能標準 25 3.2.1 CPS1學理 25 3.2.2 適用於台電系統的CPS1 29 3.2.3 台電CPS1的實例探討 30 3.3 AGC備轉餘裕量 32 3.3.1 備轉容量與調頻之關係 32 3.3.2 台電AGC備轉餘裕量的計算方法 33 3.3.3 台電AGC備轉餘裕量的實例探討 35 3.4 發電成本計算 38 3.4.1 熱率曲線與燃料成本曲線 38 3.4.2 AGC機組之累計燃料成本計算 44 3.4.3 發電成本的實例探討 45 3.5 AGC機組控制模式 47 3.6 本章結論 49 第四章 AGC模擬架構的實現 50 4.1 前言 50 4.2 模擬系統的架構 50 4.3 慣量與負載 53 4.4 渦輪-調速機模型 55 4.5 AGC系統 57 4.6 負載資料處理 59 4.6.1 負載變動的資料處理 59 4.6.2 基準值誤差的資料處理 63 4.6.3 基準值誤差的計算範例 73 4.7 本章結論 79 第五章 調頻策略的模擬結果與建議 80 5.1 前言 80 5.2 多因素評分優選法 80 5.2.1 歸屬函數 81 5.2.2 制定CPS1、Margin及Cost的歸屬函數 81 5.3 99年3月31日的模擬結果 84 5.4 99年1月4日的模擬結果 91 5.5 99年9月8日的模擬結果 97 5.6 調頻策略的分析與建議 103 5.7 本章結論 105 第六章 結論與未來研究方向 106 6.1 結論 106 6.2 未來研究方向 107 參考文獻 108 附錄一. 火力機組燃料成本參數表 111 附錄二. AGC機組參考表 113 作者簡介 114

    [1]Hadi Saadat, Power System Analysis, McGraw-Hill, 2002.
    [2]Stephen J. Chapman, Electric Machinery Fundamentals, McGraw-Hill, 2004.
    [3]P. Kundur, Power System Stability and Control, McGraw-Hill, 1994.
    [4]陳躬耕,“自動發電控制功能的解析與操作”,台電工程月刊,第504期,第69~90 頁,民國七十九年八月。
    [5]陳躬耕,“電力供需平衡供需機制” ,電機月刊,第151 期,第232~242 頁,民國九十二年七月。
    [6]張標盛,“台灣電力系統運轉”,台電工程月刊,第573 期,第188~209 頁,民國八十五年八月。
    [7]涂正義、蔡利郎、曾重富、雷旭民、施有為,“台灣電力系統頻率品質之提升”,台電工程月刊,第697 期,第29~41 頁,民國九十五年九月。
    [8]吳進忠,獨立電力系統合理備轉容量規劃與調度之研究,國立台灣科技大學電機工程系博士論文,民國九十二年七月。
    [9]林胤均,因應獨立型電力系統的即時偶發事故備載規劃,國立成功大學電機工程系碩士論文,民國九十五年六月。
    [10]台灣電力公司,電力系統運轉操作章則彙編 (原「電力調度規則彙編」)。
    [11]台灣電力公司,台灣電力系統控制效能標準制定與AGC控制策略分析,民國100年1月。
    [12]台灣電力公司,台灣電力系統頻率運轉規範之研擬,民國95年1月。
    [13]NERC Resources Subcommittee, “Performance Standard Reference Document,” Ver. 3, Oct. 2007.
    [14]NERC Performance Subcommittee Control Criteria Task Force, Control Performance Standard and Disturbance Control Standard Frequently Asked Questions, www.nerc.com, 1996.
    [15]L.-R. Change-Chien, N. B. Hoonchareon, C. M. Ong, and B. A. Kramer, “Estimation of β for Adaptive Frequency Bias Setting in Load Frequency Control,”IEEE Transactions on Power Systems, Vol. 18, No. 2, pp-904-911, May 2003.
    [16]L.-R. Chang-Chien, C. M. Ong, and R. A. Kramer, “Field Tests and Refinements of an ACE model,” IEEE Transactions on Power Systems, Vol. 18, no. 2, pp. 898-903, May 2003.
    [17]Working Group on Prime Mover Models, “Dynamic Models for Fossil Fueled Steam Units in Power System Studies,” IEEE Transactions on Power Systems, PWRS-6, No. 92, pp. 753-761, 1991.
    [18]Working Group on Prime Mover Models, “Hydraulic Turbine a and Turbine Control Models for System Dynamic Studies,” IEEE Transactions on Power Systems, Vol.7, No. 1, pp. 167-179, 1992.
    [19]Eric Hirst and Brendan Kirby, “Separating and measuring the regulation and load-following ancillary services,”Consultants in Electric-Industry Restructuring,Oak Ridge, Tennessee 37830, March 1999.
    [20]經濟部能源局,取自於 http://www.cadiis.com.tw/energy/。
    [21]何金燦,複循環機組加氫之性能模擬分析與成本效益評估,國立中央大學機械工程研究所碩士論文,民國九十七年七月。
    [22]周惠珍,“投資項目評估案例分析”,東北財經大學出版社,2000年。
    [23]Satyendra Nath Mandal, J. Choudhury, Dilip De, and S. R. Bhadra Chaudhuri, “Roll of Membership functions in Fuzzy Logic for Prediction of Shoot Length of Mustard Plant Base on Residual Analysis,”World Academy of Science, Engineering and Technology , 2008.
    [24]Ion Boldea, Synchronous Generators, Taylor & Francis Group, 2006.
    [25]L. Soder, “Reserve Margin Planning in a Wind-Hydro-Thermal Power System,” IEEE Transactions on Power Systems, Vol. 8, No. 2, pp.564-571, 1993.
    [26]A. J. Wood and B.F. Wollenberg, Power Generation, Operation and Control, second edition, John Wiley & Sons, New York, NY, 1996.
    [27]M. Nagpal, A. Moshref, G.K. Morison, and P. Kundur, “Experience with Testing and Modeling of Gas Turbines,” IEEE Power Engineering Society Winter Meeting, Vol. 2, pp.652-656, 2001.

    下載圖示 校內:2013-08-23公開
    校外:立即公開
    QR CODE