簡易檢索 / 詳目顯示

研究生: 林佳翰
Lin, Chia-Han
論文名稱: 具有箝位電路全橋相移雙向轉換器之設計與研製
Design and Implementation of a Bidirectional Phase-Shift Full-Bridge DC-DC Converter with Clamp Circuits
指導教授: 李祖聖
Li, Tzuu-Hseng S.
共同指導教授: 梁從主
Liang, Tsorng-Juu
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 66
中文關鍵詞: 雙向轉換器全橋相移轉換器數位訊號處理器
外文關鍵詞: bidirectional converter, phase-shifted full-bridge converter, digital control
相關次數: 點閱:134下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研製一應用於直流電壓端與電池的雙向轉換器,主電路採用具有箝位電路之全橋相移雙向轉換器。全橋相移雙向轉換器利用變壓器的漏感及諧振電感與開關上之輸出電容達到電路諧振,使開關達到零電壓切換,提升電路整體效率。但是,電路中的雜散電感會造成共振現象,增加功率元件的電壓應力及電流應力。本研究在直流電壓端及變壓器間加入兩個二極體,並在電池端的電感及電容間加入諧振電容及二極體,以降低功率元件上的電壓應力及電流應力。最後,以數位訊號處理器 TMS320F28035作為控制核心,研製一輸入電壓為400 V、輸出電壓為 310-410 V,額定輸出功率為4 kW之雙向轉換器。充電階段最高轉換效率為97.8%。

    In this thesis, a bidirectional DC-DC converter used for energy conversion between DC bus and battery is designed and implemented. The main circuit topology is a bidirectional phase-shift full-bridge (BPSFB) DC-DC converter with clamping circuits. The resonant tank is formed by transformer leakage inductor, resonant inductor and output capacitor of the switch to achieve zero-voltage switching (ZVS) for improving system efficiency. However, the power switches are suffered from high voltage stress and current stress due to the oscillation caused by the stray inductances. Two clamping diodes are added in DC bus side and a capacitor with two clamping diodes are added in battery side, to reduce the voltage and current stress on power switches. Finally, the digital signal processor (TMS320F28035) is used to realize the laboratory prototype with the DC bus voltage 400 V, battery voltage 310-410 V, and rated output power 4 kW. In the charging stage, the maximum conversion efficiency is 97.8%.

    Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Organization 5 Chapter 2 Introduction of the Bidirectional DC-DC Converter 6 2.1 Non-Isolated Bidirectional DC-DC Converter 6 2.2 Isolated Bidirectional DC-DC Converter 8 2.2.1 Bidirectional Half-Bridge DC–DC Converter 8 2.2.2 Bidirectional Half-Bridge/Push-Pull DC–DC converter 10 2.2.3 Bidirectional Full-Bridge DC–DC Converter 11 2.2.4 Bidirectional Full-Bridge/Push-Pull DC–DC converter 13 Chapter 3 Analysis of the BPSFB Converter with Clamp Circuits 14 3.1 Introduction of BPSFB Converter with Clamp Circuits 14 3.1.1 Operated Principle of BPSFB Converter with Clamp Circuits i in Charging Stage 20 3.1.2 Operated Principle of BPSFB Converter with Clamp Circuits i in Discharging Stage 33 Chapter 4 System Implementation and Discussions 43 4.1 Specifications and Key Components Design of BPSFB Converter with Clamp Circuits 43 4.1.1 Circuits Parameters Design 44 4.2 Experimental Results and Discussions 48 4.2.1 Discussions of Simulation and Experimental Results in Charging Stage 49 4.2.2 Discussions of Simulation and Experimental Results in Discharging Stage 58 Chapter 5 Conclusions and Future Works 62 5.1 Conclusions 62 5.2 Future Works 63 REFERENCES 64

    [1] F. Caricchi, F. Crescimbini, G. Noia, and D. Pirolo, "Experimental study of a bidirectional DC-DC converter for the DC link voltage control and the regenerative braking in PM motor drives devoted to electrical vehicles," in Proc. of 9th Annual Applied Power Electronics Conference and Exposition (APEC 1994), Orlando, 1994, pp. 13-17.
    [2] M. R. Mohammadi and H. Farzanehfard, "A new bidirectional ZVS-PWM Cuk converter with active clamp," in Proc. of 19th Iranian Conference on Electrical Engineering, Tehran, 2011, pp. 17-19.
    [3] I. D. Kim, Y. H. Lee, B. H. Min, and E. C. Nho, "Design of bidirectional PWM Sepic/Zeta DC-DC converter," in Proc. of 7th International Conference on Power Electronics, Daegu, 2007, pp. 22-26.
    [4] F. Z. Peng, H. Li, G. J. Su, and J. S. Lawler, “A new ZVS bidirectional dc-dc converter for fuel cell and battery application,” IEEE Trans. Power Electronics, vol. 19, no. 1, pp. 54-65, 2004.
    [5] H. Li and F. Z. Peng, “Modeling of a new ZVS bi-directional dc-dc converter,” IEEE Trans. Aerosp. Electron. Syst., vol. 40, no. 1, pp. 272-283, 2004.
    [6] H. Li, F. Z. Peng, and J. S. Lawler, “A natural ZVS medium-power bidirectional dc-dc converter with minimum number of devices,” IEEE Trans. Industry Applications, vol. 39, no. 2, pp. 525-535, 2003.
    [7] H. Li and D. Liu, “Power distribution strategy of fuel cell vehicle system with hybrid energy storage elements using triple half bridge bidirectional dc-dc converter,” in Proc. Ind. Appl. Conf., Sep. 2007, pp. 636-642.
    [8] D. Chakraborty, A. K. Rathore, E. Breaz, and F. Gao, “Parasites assisted soft-switching and naturally commutated current-fed bidirectional push-pull voltage doubler,” in Proc. 2015 IEEE Industry Applications Society Annual Meeting, Addison, TX, 2015, pp. 1-8.
    [9] Z. Zhang, O. C. Thomsen, and M. A. E. Andersen, “A novel PPFHB bidirectional DC-DC converter for super-capacitor application,” in Proc. International Conference on Clean Electrical Power (ICCEP 2009), Italy, 2009.
    [10] T. Ngo, J. Won, and K. Nam, “A single-phase bidirectional dual active half-bridge converter,” in Proc. 2012 26th Annu. IEEE Applied Power Electronics Conference (APEC), Conf. Expo, Feb. 2012, pp. 1127-1133.
    [11] Z. Zhang, O. C. Thomsen, and M. A. E. Andersen, “Analysis and design of PPFHB bidirectional DC-DC converter with coupled inductors,” in Proc. 13th European Conference on Power Electronics and Applications (EPE 2009), Spain, 2009, pp.434-437.
    [12] J. H. Jung, H. S. Kim, M. H. Ryu, and J. W. Baek, “Design methodology of bidirectional CLLC resonant converter for high-frequency isolation of dc distribution systems,” IEEE Trans. Power Electron., vol. 28, no. 4, pp. 1741-1755, Apr. 2013.
    [13] B. Zhao, Q. Yu, and W. Sun, “Extended-phase-shift control of isolated bidirectional DC-DC converter for power distribution in microgrid,” IEEE Trans. Power Electron., vol. 27, no. 11, pp. 4667-4680, Nov. 2012.
    [14] Y. Song and P. N. Enjeti, “New soft switching technique for bi-directional power flow, full-bridge dc-dc converter,” in Proc. Industry Applications Conference, 2002, pp. 2314-2319.
    [15] R. Ramachandran and M. Nymand, “ 98.8% efficient bidirectional full-bridge isolated dc-dc GaN converter,” in Proc. 2016 IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, 2016, pp. 609-614.
    [16] S. Inoue and H. Akagi, “A bidirectional isolated dc-dc converter as a core circuit of the next-generation medium-voltage power conversion system,” IEEE Trans Power Electron., vol. 22, no. 2, pp. 535-542, Feb. 2007.
    [17] M. S. Huang, P. Y. Yeh, J. R. Huang, and C. H. Liao, “Novel bidirectional ac-dc converter for electrical vehicle battery testing,” in Proc. IECON 2011 - 37th Annual Conference on IEEE Industrial Electronics Society, Nov. 2011, pp. 1480-1485.
    [18] K. Yamamoto, E. Hiraki, T. Tanaka, and M. Nakaoka, “Bidirectional dc-dc converter with full-bridge / push-pull circuit for automobile electric power systems,” in IEEE PESC, 2006, pp. 1-5.
    [19] A. R. Alonso, J. Sebastian, D. G. Lamar, and M. Marta “An overall study of a dual active bridge for bidirectional dc-dc conversion,” in Energy Conversion Congress and Exposition (ECCE), 2010, pp. 1129-1135.
    [20] H. J. Chiu and L. W. Lin, “A bidirectional dc–dc converter for fuel cell electric vehicle driving system,” IEEE Trans. Power Electron., vol. 21, no. 4, pp. 950-958, Jul. 2006.
    [21] B. Y. Chen and Y. S. Lai, “Switching control technique of phase-shift controlled full-bridge converter to improve efficiency under light-load and standby conditions without additional auxiliary components,” IEEE Trans. Power Electron., vol. 25, no. 4, pp. 1001-1012, Apr. 2010.
    [22] C. Zhao, X. Wu, W. Yao, and Z. Qian, “Optimum design considerations for soft- switched phase-shift full-bridge converter with primary-side energy storage inductor,” in Proc. IEEE Power Electro. Spec. Conf., 2008, pp. 366-371.
    [23] I. Cho, K. Cho, J. Kim, and G. Moon, “A new phase-shifted full-bridge converter with maximum duty operation for server power system,” IEEE Trans. Power Electron., vol. 26, no. 12, pp. 3491-3500, Dec. 2011.
    [24] K. Cho, Y. Kim, I. Cho, and G. Moon, “Transformer integrated with additional resonant inductor for phase-shift full-bridge converter with primary clamping diodes,” IEEE Trans. Power Electron., vol. 27, no. 5, pp. 2405-2414, May 2012.
    [25] I. Lee and G. Moon, “Analysis and design of phase-shifted dual H-bridge converter with a wide ZVS range and reduced output filter,” IEEE Trans. Ind. Electron., vol. 60, no. 10, pp. 4415-4426, Oct. 2013.
    [26] S. Y. Lin and C. L. Chen, “Analysis and design for RCD clamped snubber used in output rectifier of phase-shift full-bridge ZVS converters,” IEEE Trans. Ind. Electron., vol. 45, no. 2, pp. 358-359, Apr. 1998.
    [27] E. S. Kim and Y. H. Kim, “A ZVZCS PWM FB DC/DC converter using a modified energy-recovery snubber,” IEEE Trans. Ind. Electron., vol. 49, no. 5, pp. 1120-1127, Oct. 2002.
    [28] R. Redl, N. O. Sokal, and L. Balogh, “A novel soft-switching full-bridge DC-DC converter: Analysis, design considerations, and experimental results at 1.5 kW, 100 kHz,” IEEE Trans. Power Electron., vol. 6, no. 3, pp. 408-418, July 1991.
    [29] X. Ruan and F. Liu, “An improved ZVS PWM full-bridge converter with clamping diodes,” in Proc. IEEE 35th Annu. Power Electron. Spec. Conf., Aachen, Germany, 2004, pp. 1476-1481.

    下載圖示 校內:2022-08-31公開
    校外:2022-08-31公開
    QR CODE