簡易檢索 / 詳目顯示

研究生: 張毅
Zhang, Yi
論文名稱: 可變動調頻電刺激系統及應用於生理適應性之評估
A Variable Frequency Modulation Electrical Stimulation System and the Evaluation for Physiological Adaptation Application
指導教授: 戴政祺
Tai, Cheng-Chi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 65
中文關鍵詞: 中頻電刺激器變動調變適應性
外文關鍵詞: variable frequency modulation, middle-frequency electrical stimulation system, Adaptation
相關次數: 點閱:68下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文之主要目的在設計一可變動調頻電刺激系統並進行實際人體電刺激實驗,以評估此系統在人體生理適應上的可能應用。此刺激器之主要設計原理是以低頻弦波調制中頻載波產生中頻刺激信號。輸出波形是利用兩組弦波產生電路,經過具有將信號平均調變功能的四象限乘法器合成調制波。為了提升刺激療效,在系統中採用頻率可以變動的頻率調變技術,輸出信號的頻率是藉由數位控制電路調整。由實際人體測試電刺激有感實驗與耐受性試驗,發現在三種不同位置下,實驗者對於低頻頻率漸減調制模式刺激感覺強烈。與頻率固定的調變頻率刺激比較,變動調變頻率更能長時間持續有感刺激,並提高療效和便利於實際治療應用。

    In this thesis, we have developed a variable frequency modulation (FM) electrical stimulation system. It generates stimulated signals to modulate the middle-frequency carrier with low-frequency sine wave. The output waves are produced by two sine wave functions and synthesized by a four-quadrant multiplier with balance. The frequency of the stimulation waveform can be controlled from a digital unit. In order to have more effective stimulation, this study adopted a variable FM method in the system. We tested the curative effect of the electrical stimulation based on the feeling and the tolerance of human body. Our experimental results showed that the muscle is very sensitive to ramped low-frequency waveforms for three different positions. When compared with fixed FM stimulation, the variable FM stimulation has longer and better curative effect.

    第 一 章 緒論 1 1-1 研究背景 1 1­2 文獻回顧 2 1­3 研究動機與目的 8 第 二 章 中頻電刺激理論 10 2-1中頻電生理效應 10 2-1-1 基本電生理 10 2-1-2 動作電位之產生 10 2-1-3 動作電位之傳遞 11 2-1-4 生物性電容效應 12 2-1-5 Gildemeiser效應 13 2-1-6改善電療舒適度 14 2-2 干擾電流理論 14 2-3中頻調變裝置 17 第 三 章 中頻調變電刺激系統架構與設計 20 3-1 中頻調變波形電路 20 3-1-1 弦波產生電路 20 3-1-2 波形合成與強度調整 22 3-2電刺激系統的輸出與回授電路 23 3-2-1 功率放大與昇壓電路 24 3-2-2 流經人體電流檢測電路 25 3-3 數位控制電路 27 3-4電源供應系統 30 3-5 系統程式設計 30 第 四 章 實驗結果與討論 32 4-1 系統規格 32 4-2 各項刺激訊號測試 33 4-3 不同負載測試 38 4-4 輸出穩定度測試 40 4-5 人體測試 43 第 五 章 結論與未來展望 52 5-1 結論 52 5-2 未來展望 53 參考文獻 54 附 錄 63

    S. Kitchen, “Electrotherapy Evidence-Based Practice”, Churchill Livingstone, New York, 11 ed., 2002.
    詹遠華,“電療學”,大學圖書出版社,民國八十三年。
    P. Wall and R. Melzack, “Neural mechanisms which discriminate events on the skin”, Information Theory, IEEE Transactions on, vol. 8, pp. 120-125, 1962.
    T. Yamasawa, M. Yoshimura and M. Toriu, “Transcutaneous electric nerve stimulator”, U. S. patent 5048523, Sep. 17 1991.
    W. Hao, H. Zhu, H. Zhang and B. Tian, “Study on a Mechanical Acupuncture Instrument with Computer Aided Controlled”, Engineering in Medicine and Biology Society, 2005 IEEE-EMBS 27th Annual International Conference, pp. 4259-4262, 2005.
    K. Stegath, N. Sharma, C. M. Gregory and W. E. Dixon, “An extremum seeking method for non-isometric neuromuscular electrical stimulation”, ISIC. IEEE International Conference, Systems, Man and Cybernetics, pp. 2528-2532, 2007.
    J. J. McCarthy, R. L. Finson, and R. R. Betz, “The use of neuromuscular electrical stimulation (NMES) in the treatment of children with cerebral palsy”, Pediatric Gait, A new Millennium in Clinical Care and Motion Analysis Technology, pp. 39-45, 2000.
    K. Arabi, K. Arabi and M. A. Sawan, “Electronic design of a multichannel programmable implant for neuromuscular electrical stimulation”, IEEE Transactions on [see also IEEE Trans. on Neural Systems and Rehabilitation], Rehabilitation Engineering, vol. 7, pp. 204-214, 1999.
    B, Ann, J. J. Chen and M. S. Ju, “Implementation of an adaptive fuzzy controller for FES-cycling system”, Proceedings of the 19th Annual International Conference of the IEEE, Engineering in Medicine and Biology Society, vol.3, pp. 1119-1120, 1997.
    J. J. Chen and N. Y. Yu, “The validity of stimulus-evoked EMG for studying muscle fatigue characteristics of paraplegic subjects during dynamic cycling movement”, IEEE Transactions on [see also IEEE Trans. on Neural Systems and Rehabilitation], Rehabilitation Engineering, vol. 5, pp. 170-178, 1997.
    Y. Forneiro, J. Folgueras and R. Benitez, “Therapeutic electrical stimulator Therapeutic electrical stimulator”, Proceedings of the 25th Annual International Conference of the IEEE, Engineering in Medicine and Biology Society, Vol.2, pp. 1716-1719, 2003.
    J. Tierney, C. Rader and B. Gold, “A digital frequency synthesizer”, IEEE Transactions on, Audio and Electroacoustics, vol. 19, pp. 48-57, 1971.
    W. Hu, C. L. Lee and Xin'an Wang, “Arbitrary Waveform Generator Based on Direct Digital Frequency Synthesizer”, DELTA 2008. 4th IEEE International Symposium on, Electronic Design, Test and Applications, pp. 567-570, 2008.
    程皓白,“中頻調制定電流電刺激系統之實現”,私立義守大學電子工程研究所碩士論文,民國九十五年。
    M. R. Popovic, T. Keller and M. Morari, “Surface-stimulation technology for grasping and walking neuroprostheses”, IEEE, Engineering in Medicine and Biology Magazine, vol. 20, pp. 82-93, 2001.
    C. W. Caldwell and J. B. Reswick, “A Percutaneous Wire Electrode for Chronic Research Use”, IEEE Transactions on, Biomedical Engineering, vol. BME-22, pp. 429-432, 1975.
    R. Kobetic, R. J. Triolo and M. Sharma, “Implanted functional electrical stimulation system for mobility in paraplegia: a follow-up case report”, IEEE Transactions on [see also IEEE Trans. on Neural Systems and Rehabilitation], Rehabilitation Engineering, vol. 7, pp. 390-398, 1999.
    S. C. Han, “Electrodes for a transcutaneous electrical nerve stimulator”, U.S. patent 6907299, Jun. 14 2005.
    A. J. Bevilacqua, “Transcutaneous electrode construction”, U. S. patent 4196737, Apr. 8 1980.
    許世峯,“神經電刺激止痛器”,物理治療學會雜誌,3卷,頁 62-67,民國七十八年。
    J. G. Webster, “Medical instrumentation application and design”, John Wiley & Sons Inc., 3rd ed., 1998.
    Abbas Erfanian, Howard Jay Chizeck and R. M. Hashemi, “Using evoked EMG as a synthetic force sensor of isometric electrically stimulated muscle”, IEEE Transactions on, Biomedical Engineering, vol. 45, pp. 188-202, 1998.
    J. Mouine and K. A. Ammar, “A miniaturized implantable spinal cord microstimulator for treating intractable chronic pain”, 1st Annual International, Conference On, Microtechnologies in Medicine and Biology, pp. 630-634, 2000.
    M. Clements, K. Vichienchom, L. Wentai, C. Hughes and R. Greenberg, “An implantable neuro-stimulator device for a retinal prosthesis”, Digest of Technical Papers. ISSCC. 1999 IEEE International, Solid-State Circuits Conference, pp. 216-217, 1999.
    S. Robin, M. Sawan, T. M. Abdel-Baky and M. M. Elhilai, “A new implantable microstimulator dedicated to selective stimulation of the bladder”, Proceedings of the 19th Annual International Conference of the IEEE, Engineering in Medicine and Biology society, vol.4, pp. 1792-1795, 1997.
    K. Arabi and M. Sawan, “A monolithic miniaturized programmable implant for neuromuscular stimulation”, IEEE 17th Annual Conference, Engineering in Medicine and Biology Society, vol.2, pp. 1131-1132, 1995.
    C. W. Chang, W. Y. Chung and J. X. Dai, “A novel system design for implantable stimulator application”, IEMBS '04. 26th Annual International Conference of the IEEE, Engineering in Medicine and Biology Society, Vol.6, pp. 4107-4110, 2004.
    H. Matsuki, k. Ofuji, N. Chubachi and S. Nitta, “Signal transmission for implantable medical devices using figure-of-eight coils”, IEEE Transactions on, Magnetics, vol. 32, pp. 5121-5123, 1996.
    D. Marin, M. Troosters, I. Martinez, E. Valderrama and J. Aguilo, “New developments for high performance implantable stimulators: first 3 Mbps up to 4.46 Mbps demodulator chip through a wireless transcutaneous link”, MicroNeuro '99. Proceedings of the Seventh International Conference on, Microelectronics for Neural, Fuzzy and Bio-Inspired Systems, pp. 120-126, 1999.
    Fumihiro Sato, Takashi Nomoto and Tadakuni Sato, “A new contactless power-signal transmission device for implanted functional electrical stimulation (FES) ”, IEEE Transactions on, Magnetics, vol. 40, pp. 2964-2966, 2004.
    D. R. McNeal, R. J. Nakai, P. Meadows and W. Tu, “Open-loop control of the freely-swinging paralyzed leg”, IEEE Transactions on, Biomedical Engineering, vol. 36, pp. 895-905, 1989.
    Q. Xu, J. He, Y. Wang and J. Huang, “A review of fundamental mechanisms and techniques in functional electrical stimulation”, Proceedings First International Conference on Neural Interface and Control, pp. 201-204, 2005.
    K. W. Cheng, Yan Lu, Kai-Yu Tong, A. B. Rad, H. K. Chow and Danny Sutanto, “Development of a circuit for functional electrical stimulation”, IEEE Transactions on [see also IEEE Trans. on Rehabilitation Engineering], Neural Systems and Rehabilitation Engineering, vol. 12, pp. 43-47, 2004.
    C. L. Lin, H. C. Wu and T. S. Kuo, “A multichannel programmable DSP-based FES system”, Proceedings of the 19th Annual International Conference of the IEEE, Engineering in Medicine and Biology society, vol.5, pp. 1932-1933, 1997.
    H. Dou, A. Asres, and Z. Zhu, “Stimulator for real time control of paralyzed muscles during functional electrical stimulation”, Proceedings of the Third IEEE International Conference on, Engineering in Medicine and Biology society, vol. 2, pp. 1096-1099, 1996.
    P. M. Meadows and D. R. McNeal, “A four-channel IBM PC/AT compatible biphasic pulse generator for nerve stimulation”, IEEE Transactions on, Biomedical Engineering, vol. 36, pp. 802-804, 1989.
    K. Arabi and M. Sawan, “Multiprogrammable stimulus waveform generator for neuromuscular electrical stimulation”, IEEE 17th Annual Conference, Engineering in Medicine and Biology Society, vol. 2, pp. 1111-1112, 1995.
    蔡育秀,“可程式化神經肌肉穴位電刺激器”,中原大學醫學工程研究所碩士論文,民國九十二年。
    C. J. Poletto and C. L. Doren, “A high voltage, constant current stimulator for electrocutaneous stimulation through small electrodes”, IEEE Transactions on, Biomedical Engineering, vol. 46, pp. 929-936, 1999.
    J. D. Techer, S. Bernard, Y. Bertrand, G. Cathebras and D. Guiraud, “New implantable stimulator for the FES of paralyzed muscles”, Proceeding of the 30th European, Solid-State Circuits Conference, pp. 455-458, 2004.
    T. Stieglitz, T. Matal and M. Staemmler, “A modular multichannel stimulator for arbitrary shaped current pulses for experimental and clinical use in FES”, Proceedings of the 19th Annual International Conference of the IEEE, Engineering in Medicine and Biology society, vol.4, pp. 1777-1780, 1997.
    B. Kreutner, “Transcutaneous electric nerve stimulation system”, U. S. patent 5291883, Mar. 8 1994.
    J. Rossen, “Transcutaneous electrical nerve stimulation (TENS) device”, U. S. patent. 4989605, Feb. 5 1991.
    C. H. Miller, M. R. Kaldun, and R. A. Arp, “Transcutaneous electrical nerve stimulator”, U.S. patent 4121594, Oct. 24 1978.
    J. Tannenbaum, “Apparatus and method for controlling pain by transcutaneous electrical stimulation (TES) ”, U. S. patent 4233986, Nov. 18 1980.
    R. B. Butler, N. A. Helm and A. W. MacEachern, “Transcutaneous nerve stimulator with pseusorandom pulse gernerator”, U. S. patent 4431000, Feb. 14 1984.
    魏如良,“應用於電刺激貼片之新型電流輸出驅動電路設計”,中原大學電子工程學系研究所碩士論文,民國九十四年。
    T. H. Charters and F. L. Jenkner, “Transcutaneous nerve block device”, U. S. patent 4938223, Jul. 3 1990.
    H. M. Johng, J. H. Cho and M. S. Park, “Frequency dependence of impedances at the acupuncture point Quze (PC3) ”, IEEE, Engineering in Medicine and Biology Magazine, vol. 21, pp. 33-36, 2002.
    L. A. Bernotas, P. E. Crago and H. J. Chizeck, “A Discrete-Time Model of Electrcally Stimulated Muscle ”, Biomedical Engineering, IEEE Transactions on, vol. BME-33, pp. 829-838, 1986.
    T. Watanabe, R. Futami, N. Hoshimiya, and Y. Handa, “An approach to a muscle model with a stimulus frequency-force relationship for FES applications ”, IEEE Transactions on [see also IEEE Trans. on Neural Systems and Rehabilitation], Rehabilitation Engineering, vol. 7, pp. 12-18, 1999.
    K. J. Gustafson, J. D. Sweeney, and T. A. Brandon, “Effects of stimulation frequency and pulse train duration on skeletal muscle ventricle performance ”, Proceedings of the 18th Annual International Conference of the IEEE, Engineering in Medicine and Biology Society, vol.3, pp. 1330-1331, 1996.
    P. E. Crago P. H. Peckham and G. B. Thrope, “Modulation of Muscle Force by Recruitment During Intramuscular Stimulation”, IEEE Transactions on, Biomedical Engineering, vol. BME-27, pp. 679-684, 1980.
    廖文炫,“物理因子治療學:冷、熱、光、水療及機械性治療”,合記圖書出版社,民國九十一年。
    L. M. Silberstone and M. E. Halleck, “High frequency high intensity transcutaneous electrical nerve stimulator and method of treatment”, U. S. patent 5052391, Oct. 1 1991.
    N. de N. Donaldson and C. H. Yu, “FES standing: control by handle reactions of leg muscle stimulation (CHRELMS)”, IEEE Transactions on [see also IEEE Trans. on Neural Systems and Rehabilitation], Rehabilitation Engineering, vol. 4, pp. 280-284, 1996.
    A. K. Thompson, A. K. Thompson and J. R. Wolpaw, “Modulation in spinal circuits and corticospinal connections following nerve stimulation and operant conditioning ”, 28th Annual International Conference of the IEEE, Engineering in Medicine and Biology Society, pp. 2138-2141, 2006.
    蔡政恭,“以ARM為基礎之向量干擾式與中頻調制式電刺激器系統研製”, 義守大學電子工程研究所碩士論文,民國九十五年。
    孫利群及白玲,“干擾電療法機制探討和臨床療效評估”,物理醫學與康復學分冊國外醫學,第二十五卷第三期, 110-112頁,民國九十四年。
    孔瑛及張長杰,“干擾電療法機和經皮電刺激神經療法對局部缺血性疼痛止痛效果的研究”,物理醫學與康復學分冊,國外醫學,第二十五卷第三期, 113-131頁,民國九十四年。
    G. P. Braz, R. M. Cruz and J. L. B. Marques, “A psychological approach in the use of electrical stimulation for the treatment of pain patients”, Vol.2, pp. 1284-1286, 2003.
    M. Min and T. Parve, “Improvement of Lock-in Electrical Bio-Impedance Analyzer for Implantable Medical Devices”, IEEE Transactions on, Instrumentation and Measurement, vol. 56, pp. 968-974, 2007.
    蘇經洲,楊弘吉和戴政祺,“低週波電子治療器之設計與應用”, 2002生物醫學工程科技研討會,高雄義守大學,民國九十一年。
    林良士,楊弘吉,戴政祺和王頌濤,“中低頻電刺激治療系統之設計與應用”, 2003生物醫學工程科技研討會,台北陽明大學,民國九十一年。
    林良士,“中頻與低頻經皮神經電刺激系統之研製”, 國立成功大學電機工程研究所碩士論文,民國九十三年。
    戴政祺,“中頻電子治療器”,行政院國家科學委員會專題研究計畫成果報告,計畫編號: NSC 91-2622-E-006-082-CC3,民國九十三年。
    S. Ravichandran and S. Ravichandran, “Recent Advances In Interferential Current Therapy”, Proceedings of the Twelfth Annual International Conference of the IEEE, Engineering in Medicine and Biology Society, pp. 2313-2314, 1990.
    Y. Sasaki, K. Yada, and M. Yoshida, “New stimulation method for stimulus point”, Proceedings of the 25th Annual International Conference of the IEEE, Engineering in Medicine and Biology Society, Vol.2, pp. 1655-1657, 2003.
    K. Nomura, K. Yada and M. Yoshida, “Interferential current stimulation for sensory communication between prosthetic hand and man Interferential current stimulation for sensory communication between prosthetic hand and man”, IEEE-EMBS 2005. 27th Annual International Conference of the, Engineering in Medicine and Biology Society, pp. 6923-6926, 2005.
    Y. C. Li, K. N. Huang and C. J. Chen, “The Implementation of a Multi-Channel Interferential Current Electrical Stimulation System”, IEEE-EMBS 2005. 27th Annual International Conference, Engineering in Medicine and Biology Society, pp. 6207-6209, 2005.
    G. Kantor, G. Alon and H. S. Ho, “Threshold excitations of sensory and motor nerves using different biphasic pulse bursts”, Proceedings of the Annual International Conference of the IEEE, Engineering in Medicine and Biology Society, vol.4, pp. 1690-1691, 1988.
    G. Kantor and G. Alon, “Transcutaneous electrical stimulation devices tests”, Bridging Disciplines for Biomedicine. Proceedings of the 18th Annual International Conference of the IEEE, Engineering in Medicine and Biology Society, vol.5, pp. 2193, 1996.
    G. Kantor and H. S. Ho, “Simulated tissue loads for testing of transcutaneous electrical stimulators”, Proceedings of the 16th Annual International Conference of the IEEE, Engineering in Medicine and Biology Society, Engineering Advances: New Opportunities for Biomedical Engineers, vol.2, pp. 784-785, 1994.
    G. Kantor, G. Alon and H. S. Ho, “Threshold Excitation Study Of Peripheral Nerves With Human Subjects”, Proceedings of the Twelfth Annual International Conference of the IEEE, Engineering in Medicine and Biology Society, pp. 2242-2243, 1990.

    下載圖示 校內:2011-07-21公開
    校外:2011-07-21公開
    QR CODE