簡易檢索 / 詳目顯示

研究生: 黃嘉琦
Huang, Chia-Chi
論文名稱: 考量環境變遷下探討儲排水動態時空變化
Exploring temporal and spatial change in storage-discharge dynamics under environmental change
指導教授: 葉信富
Yeh, Hsin-Fu
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 87
中文關鍵詞: 環境變遷儲排水動態水文敏感度流量消退
外文關鍵詞: environmental change, storage-discharge dynamics, hydrological sensitivity, flow recession
相關次數: 點閱:132下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氣候變遷與人類活動導致水文模式變化顯著,對流域水文過程造成影響,進而使得許多地區面臨水資源問題以及社會發展與環境保護間的衝突。過去研究指出臺灣未來的降雨量及河川流量將逐漸減少,以臺灣南部區域尤為嚴重。在水資源方面,地下水為相對較為穩定的水資源來源,但由於監測困難與含水層的不可見性,研究可關注範圍有限。在地下水儲存量估計方法中,流量消退分析經常用於探討乾燥期間地下水儲存量與河川流量間的關係。因此,本研究選取臺灣南部區域17個水文測站,藉由考量環境變化影響下的低流消退分析方法,綜合性地探討消退特徵、地下水儲存量以及儲水-排水關係,並且同時將量化的環境影響與植被變化進行比較。結果顯示,集水區特徵與低流消退特徵間的相關性指出主流坡度與主流長度等為消退機制的主要控制因子,與過去研究一致。動態儲水量的區域差異性與基流指數BFI(Baseflow Index)間的相關性也顯示其與含水層地質構造的關聯性。六龜和三地門以及曾文溪與二仁溪流域的集水區有較高的儲排水敏感度,表明這些集水區的排水過程相較於其他集水區較容易受到環境變化所影響,影響機制也指出地下水儲存量的下降將導致流量消退速率的上升。此外,本研究將環境變化影響與標準化植被指數NDVI(Normalized Difference Vegetation Index)進行比較,藉此瞭解植被變化以及其他可能因素對於地下水儲存量的影響。本研究探討儲排水動態的時空差異,並透過一系列的分析幫助我們瞭解集水區排水行為中的環境影響機制。

    Climate change and human activities have led to significant changes in hydrological patterns that have had an influence on the basin/catchment hydrological processes around the world, making many regions face water resources problem and conflicts between social development and environmental protection. Previous studies also indicated that the rainfall and streamflow in Taiwan will gradually decrease, especially in Southern Taiwan. And in water resources, groundwater is a relatively stable source but often less concerned due to difficulties in monitoring and its invisibility. Among the estimation methods for groundwater storage, the recession analysis usually used to explore the relationship between groundwater storage and streamflow during the drying period. Therefore, this study choose 17 guage stations in Southern Taiwan to use the low-flow recession analysis considering environmental change impact to comprehensively explores the recession characteristics, groundwater storage, and storage-discharge relationship. Finally, the quantification of environmental impacts and vegetation coverage changes are compared for discussing how the catchment drainage process is affected by environmental changes. The results showed that the correlation between the low-flow recession characteristics and the catchment characteristics describe the mainly dependent characteristics in the recession regime. The regional differences in dynamic storage and the correlation with BFI (baseflow index, which represents the ratio of baseflow to total streamflow) also represent the relevance to the geological structure. The higher storage-discharge sensitivities in Liu-Kwei and San-Ti-Men catchments and the Zengwen and Erren river basins indicated that the drainage process in these catchments are more susceptible to environmental changes than in the others. Then the impact regime indicate that the decreasing groundwater storage will increase the flow recession rate. In addition, we compared the quantification of environmental impact changes with the change in NDVI (Normalized Difference Vegetation Index) to understand the effects of vegetation changes and other possible factors on catchment groundwater storage. This study explored temporal and spatial difference in storage-discharge dynamics and helped us to understand the environmental change impact regimes in catchment drainage behaviors by a series of analyses.

    Abstract I Acknowledgement IV Table of contents V List of tables VII List of figures VIII Chapter 1 Introduction 1 1.1 Problem statement and motivation 1 1.2 Research objective 4 1.3 Thesis outline 4 Chapter 2 Literature review 6 2.1 Overview 6 2.2 Storage-discharge dynamic analysis 6 2.3 Streamflow elasticity 10 2.4 Environmental impact on storage-discharge dynamic 13 Chapter 3 Study Area 16 3.1 Climate and hydrological conditions 16 3.2 Geography and geology 16 3.3 Utilization and problems of water resources 17 Chapter 4 Evaluating change in storage-discharge dynamics under environmental change 23 4.1 Introduction 23 4.2 Methodology 24 4.2.1 Low flow recession analysis 24 4.2.2 Recession fitting method 26 4.2.3 Screening criteria of the recession flow 27 4.2.4 Environmental change impact on storage-discharge dynamics 28 4.2.5 Dynamic groundwater storage 29 4.2.6 Storage-discharge sensitivity 30 4.3 Results and discussion 33 4.3.1 Characteristics of low-flow recession 33 4.3.2 Storage-discharge curve and dynamic storage Sd 45 4.3.3 Storage-discharge sensitivity 53 4.3.4 Water flux with environmental change in storage-discharge dynamics 60 Chapter 5 Conclusion 66 References 68 Appendix: Resume 78

    Ajami, H., Troch, P. A., Maddock, T., Meixner, T., and Eastoe, C., Quantifying mountain block recharge by means of catchment‐scale storage‐discharge relationships, Water Resources Research, 47(4), W04504, 2011.
    Anderson, M. G., and Burt, T. P., Interpretation of recession flow, Journal of Hydrology, 46(1-2), 89-101, 1980.
    Arnault, J., Wagner, S., Rummler, T., Fersch, B., Bliefernicht, J., Andresen, S., and Kunstmann, H., Role of runoff–infiltration partitioning and resolved overland flow on land–atmosphere feedbacks: A case study with the WRF-Hydro coupled modeling system for West Africa, Journal of Hydrometeorology, 17(5), 1489-1516, 2016.
    Bart, R., and Hope, A., Inter-seasonal variability in baseflow recession rates: The role of aquifer antecedent storage in central California watersheds, Journal of hydrology, 519, 205-213, 2014.
    Barnes, B. S., The structure of discharge‐recession curves, Eos, Transactions American Geophysical Union, 20(4), 721-725, 1939.
    Barrientos, G., and Iroumé, A., The effects of topography and forest management on water storage in catchments in south‐central Chile, Hydrological Processes, 32(21), 3225-3240, 2018.
    Beck, H. E., van Dijk, A. I., Miralles, D. G., de Jeu, R. A., Bruijnzeel, L. S., McVicar, T. R., and Schellekens, J., Global patterns in base flow index and recession based on streamflow observations from 3394 catchments, Water Resources Research, 49(12), 7843-7863, 2013.
    Berghuijs, W. R., Hartmann, A., and Woods, R. A., Streamflow sensitivity to water storage changes across Europe, Geophysical Research Letters, 43, 1980-1987, 2016.
    Berghuijs, W. R., Larsen, J. R., Van Emmerik, T. H., and Woods, R. A., A global assessment of runoff sensitivity to changes in precipitation, potential evaporation, and other factors, Water Resources Research, 53(10), 8475-8486, 2017.
    Berghuijs, W. R., Woods, R. A., and Hrachowitz, M., A precipitation shift from snow towards rain leads to a decrease in streamflow, Nature Climate Change, 4(7), 583-586, 2014.
    Biswal, B., and Marani, M., Geomorphological origin of recession curves, Geophysical Research Letters, 37(24), L24403, 2010.
    Biswal, B., and Marani, M., ‘Universal’recession curves and their geomorphological interpretation, Advances in water resources, 65, 34-42, 2014.
    Biswal, B., and Nagesh Kumar, D., A general geomorphological recession flow model for river basins, Water Resources Research, 49(8), 4900-4906, 2013.
    Bogaart, P. W., Van Der Velde, Y., Lyon, S. W., and Dekker, S. C., Streamflow recession patterns can help unravel the role of climate and humans in landscape co-evolution. Hydrology and Earth System Sciences, 20(4), 1413-1432, 2016.
    Botter, G., Basso, S., Rodriguez-Iturbe, I., and Rinaldo, A., Resilience of river flow regimes. Proceedings of the National Academy of Sciences, 110(32), 12925-12930, 2013.
    Boussinesq, J., Essai sur la theorie des eaux courantes. Imprimerie Nationale, Paris, France, 1877.
    Brikowski, T. H., Applying multi‐parameter runoff elasticity to assess water availability in a changing climate: an example from Texas, USA, Hydrological processes, 29(7), 1746-1756, 2015.
    Brooks, P. D., Troch, P. A., Durcik, M., Gallo, E., and Schlegel, M., Quantifying regional scale ecosystem response to changes in precipitation: Not all rain is created equal, Water Resources Research, 47(10), W00J08, 2011.
    Brutsaert, W., Hydrology: an introduction, Cambridge University Press, New York, USA, 2005.
    Brutsaert, W., Long-term groundwater storage trends estimated from streamflow records: Climatic perspective. Water Resources Research, 44, W02409, 2008.
    Brutsaert, W., Evaporation into the atmosphere: theory, history and applications, Reidel Publishing, Dordrecht, Netherlands, 2013. (Original work published 1982)
    Brutsaert, W., and Nieber J. L., Regionalized drought flow hydrographs from a mature glaciated plateau, Water Resources Research, 13, 637-643, 1977.
    Buttle, J. M., Dynamic storage: a potential metric of inter‐basin differences in storage properties, Hydrological processes, 30(24), 4644-4653, 2016.
    Buttle, J. M., Mediating stream baseflow response to climate change: The role of basin storage, Hydrological processes, 32(3), 363-378, 2018.
    Central Geological Survey, Hydrogeology Investigation and Groundwater Resource Assessment for Taiwan-Groundwater Recharge Estimation and Model Simulation Pingtung Plain, Central Geological Survey, Taipei, Republic of China, 2012. (in Chinese)
    Chang, H. S., and Liao, C. H., Living with water linking spatial planning: a study in Tseng‐wen river basin, Journal of architecture, 16(2‐3), 183–200, 2015). (in Chinese)
    Cheng, L., Zhang, L., and Brutsaert, W., Automated selection of pure base flows from regular daily streamflow data: Objective algorithm, Journal of Hydrologic Engineering, 21(11), 06016008, 2016.
    Cheng, L., Zhang, L., Chiew, F. H., Canadell, J. G., Zhao, F., Wang, Y. P., Hu, X., and Lin, K., Quantifying the impacts of vegetation changes on catchment storage‐discharge dynamics using paired catchment data, Water Resources Research, 53, 5963–5979, 2017.
    Cong, Z., Yang, D., Gao, B., Yang, H., and Hu, H., Hydrological trend analysis in the Yellow River basin using a distributed hydrological model, Water Resources Research, 45(7), W00A13, 2009.
    Cooper, M. G., Schaperow, J. R., Cooley, S. W., Alam, S., Smith, L. C., and Lettenmaier, D. P., Climate Elasticity of Low Flows in the Maritime Western US Mountains, Water Resources Research, 54(8), 5602-5619, 2018.
    Creutzfeldt, B., Troch, P. A., Güntner, A., Ferré, T. P., Graeff, T., and Merz, B., Storage‐discharge relationships at different catchment scales based on local high‐precision gravimetry, Hydrological Processes, 28(3), 1465-1475, 2014.
    Dewandel, B., Lachassagne, P., Bakalowicz, M., Weng, P. H., and Al-Malki, A., Evaluation of aquifer thickness by analysing recession hydrographs. Application to the Oman ophiolite hard-rock aquifer, Journal of hydrology, 274(1-4), 248-269, 2003.
    Dralle, D. N., Hahm, W. J., Rempe, D. M., Karst, N. J., Thompson, S. E., and Dietrich, W. E., Quantification of the seasonal hillslope water storage that does not drive streamflow, Hydrological processes, 32(13), 1978-1992, 2018.
    Dunne, T., Relation of field studies and modeling in the prediction of storm runoff, Journal of Hydrology, 65(1-3), 25-48, 1983.
    Eckhardt, K., How to construct recursive digital filters for baseflow separation, Hydrological Processes: An International Journal, 19(2), 507-515, 2005.
    Eckhardt, K., A comparison of baseflow indices, which were calculated with seven different baseflow separation methods, Journal of Hydrology, 352(1-2), 168-173, 2008.
    Famiglietti, J. S., The global groundwater crisis, Nature Climate Change, 4(11), 945, 2014.
    Gao, Z., Zhang, L., Cheng, L., Zhang, X., Cowan, T., Cai, W., and Brutsaert, W., Groundwater storage trends in the Loess Plateau of China estimated from streamflow records, Journal of Hydrology, 530, 281-290, 2015.
    Garcia, E. S., and Tague, C. L., Subsurface storage capacity influences climate–evapotranspiration interactions in three western United States catchments, Hydrology and Earth System Sciences, 19(12), 4845-4858, 2015.
    Green, T.R., Taniguchi, M., Kooi, H., Gurdak, J.J., Allen, D.M., Hiscock, K.M., Treidel, H., and Aureli, A., Beneath the surface of global change: impacts of climate change on groundwater, Journal of Hydrology, 405 (3–4), 532–560, 2011.
    Gleeson, T., Befus, K. M., Jasechko, S., Luijendijk, E., and Cardenas, M. B. The global volume and distribution of modern groundwater, Nature Geoscience, 9(2), 161, 2016.
    Harman, C. J., Troch, P. A., and Sivapalan, M., Functional model of water balance variability at the catchment scale: 2. Elasticity of fast and slow runoff components to precipitation change in the continental United States, Water Resources Research, 47(2), W02523, 2011.
    Huang, Z., and Yang, H., Dominant climatic factor driving annual runoff change at catchments scale over China, Hydrology and Earth System Sciences Discussions, 12(12), 12911–12945, 2015.
    IPCC, Climate change 2007: the physical science basis: Working group I contribution to the fourth assessment report of the IPCC. Cambridge University Press, New York, USA, 2007a.
    IPCC, Climate Change 2007: The Physical Science Basis: Summary for Policymakers, Cambridge University Press, New York, USA, 2007b.
    Jaramillo, F., and Destouni, G. Comment on “Planetary boundaries: Guiding human development on a changing planet”, Science, 348(6240), 1217-1217, 2015.
    Jia, Y., Wang, H., Zhou, Z., Qiu, Y., Luo, X., Wang, J., Yan, D., and Qin, D., Development of the WEP-L distributed hydrological model and dynamic assessment of water resources in the Yellow River basin, Journal of Hydrology, 331(3), 606-629, 2006.
    Jiménez Cisneros, B.E., Oki T., Arnell N.W., Benito G., Cogley J.G., Döll P., Jiang T., and Mwakalila S.S., Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York, USA, 229-269, 2014.
    Jones, J. A., Creed, I. F., Hatcher, K. L., Warren, R. J., Adams, M. B., Benson, M. H., Boose, E., Brown, W. A., Campbell, J. L., Covich, A., Clow, D. W., Dahm, C. N., Elder, K., Ford, C. R., Grimm, N. B., Henshaw, D. L., Larson, K. L., Miles, E. S., Miles, K. M., Sebestyen, S. D., Spargo, A. T., Stone, A. B., Vose, J. M., Williams, M. W., Ecosystem processes and human influences regulate streamflow response to climate change at long-term ecological research sites, BioScience, 62(4), 390-404, 2012.
    Kingsford, R. T., and Thomas, R. F., Environmental flows on the Paroo and Warrego Rivers, National Parks & Wildlife Service, New South Wales, Australia, 2000.
    Kirchner, J. W., Catchments as simple dynamical systems: Catchment characterization, rainfall‐runoff modeling, and doing hydrology backward, Water Resources Research, 45(2), 1–34, 2009.
    Konapala, G., and Mishra, A. K., Three-parameter-based streamflow elasticity model: Application to MOPEX basins in the USA at annual and seasonal scales, Hydrology and Earth System Sciences, 20(6), 2545-2556, 2016.
    Li, H., Sivapalan, M., and Tian, F., Comparative diagnostic analysis of runoff generation processes in Oklahoma DMIP2 basins: The Blue River and the Illinois River, Journal of Hydrology, 418, 90-109, 2012.
    Li, W., Zhang, K., Long, Y., and Feng, L., Estimation of Active Stream Network Length in a Hilly Headwater Catchment Using Recession Flow Analysis, Water, 9(5), 348, 2017.
    Lin, L., Gao, M., Liu, J., Chen, X., and Liu, H., Quantifying streamflow and active groundwater storage in response to climate warming in an alpine catchment on the Tibetan Plateau, Hydrology and Earth System Sciences Discussion, 2018.
    Liu, D., Mishra, A. K., and Zhang, K., Runoff sensitivity over Asia: Role of climate variables and initial soil conditions. Journal of Geophysical Research: Atmospheres, 122(4), 2218-2238, 2017.
    Liu, S. C., Shiu, C. J., Chen, J. P., Fu, C. B. Changes of precipitation intensity in East Asia, 2008 Taiwan Climate Change Conference, 2008. (in Chinese)
    Liu, Q. and Yang, Z., Quantitative estimation of the impact of climate change on actual evapotranspiration in the Yellow River Basin, China, Journal of Hydrology 395: 226–234, 2010.
    Lu, M. M., Cho, Y. M., Lee, S.Y., Lee, C. T. and Lin, Y. C., Climate variations in Taiwan during 1911-2009, Atmospheric Sciecnes, 40(3), 297-321, 2012. (in Chinese)
    Lyon, S. W., Destouni, G., Giesler, R., Humborg, C., Mörth, C. M., Seibert, J., Karlsson J., and Troch, P. A., Estimation of permafrost thawing rates in a sub-arctic catchment using recession flow analysis, Hydrology and Earth System Sciences, 13(5), 595-604, 2009.
    Lyon, S. W., Koutsouris, A., Scheibler, F., Jarsjö, J., Mbanguka, R., Tumbo, M., Robert, K. K., Sharma, A. N., van der Velde, Y., Interpreting characteristic drainage timescale variability across Kilombero Valley, Tanzania, Hydrological processes, 29(8), 1912-1924, 2015.
    Mendoza, G. F., Steenhuis, T. S., Walter, M. T., and Parlange, J. Y., Estimating basin-wide hydraulic parameters of a semi-arid mountainous watershed by recession-flow analysis, Journal of Hydrology, 279(1-4), 57-69, 2003.
    Montanari, A., Young, G., Savenije, H. H. G., Hughes, D., Wagener, T., Ren, L. L., Koutsoyiannis, D., Cudennec, C., Toth, E., Grimaldi, S., Blöschl, G., Sivapalan, M., Beven, K., Gupta, H., Hipsey, M., Schaefli, B., Arheimer, B., Boegh, E., Schymanski, S. J., Di Baldassarre, G., Yu, B., Hubert, P., Huang, Y., Schumann, A., Post, D., Srinivasan, V., Harman, C., Thompson, S., Rogger, M., Viglione, A., McMillan, H., Characklis, G., Pang, Z., Belyaev, V., “Panta Rhei—Everything Flows: Change in hydrology and society—The IAHS Scientific Decade 2013–2022.”, Hydrological Sciences Journal, 58 (6), 1256–1275, 2013.
    Nunes, J. P., Seixas, J., Keizer, J. J., and Ferreira, A. J. D., Sensitivity of runoff and soil erosion to climate change in two Mediterranean watersheds. Part II: assessing impacts from changes in storm rainfall, soil moisture and vegetation cover., Hydrological Processes: An International Journal, 23(8), 1212-1220, 2009.
    Oki, T., and Kanae, S., Global hydrological cycles and world water resources, Science, 313(5790), 1068-1072, 2006.
    Patnaik, S., Biswal, B., Kumar, D. N., and Sivakumar, B., Effect of catchment characteristics on the relationship between past discharge and the power law recession coefficient, Journal of Hydrology, 528, 321-328, 2015.
    Petrone, K. C., Hughes, J. D., Van Niel, T. G., Silberstein, R., Streamflow declined southwestern Australia, 1950-2008, Geophysical Research Letters, 37, L11401, 2010.
    Ploum, S. W., Lyon, S. W., Teuling, A. J., Laudon, H., and van der Velde, Y., Soil frost effects on streamflow recessions in a subarctic catchment, Hydrological Processes, 33, 1304–1316, 2019.
    Prudhomme, C., Wilby, R. L., Crooks, S., Kay, A. L., and Reynard, N. S., Scenario-neutral approach to climate change impact studies: application to flood risk, Journal of Hydrology, 390(3), 198-209, 2010.
    Qin, D., Plattner, G.K., and Tignor, M., Climate Change 2013: The Physical ScienceBasis. Cambridge University Press, New York, USA, 2014.
    Ramillien, G., Famiglietti, J. S., and Wahr, J., Detection of continental hydrology and glaciology signals from GRACE: A review, Surveys in Geophysics, 29(4–5), 361–374, 2008.
    Richey, A. S., Thomas, B. F., Lo, M. H., Reager, J. T., Famiglietti, J. S., Voss, K., Swenson, S., and Rodell, M., Quantifying renewable groundwater stress with GRACE, Water resources research, 51(7), 5217-5238, 2015.
    Riegger, J., and Tourian, M. J., Characterization of runoff‐storage relationships by satellite gravimetry and remote sensing, Water Resources Research, 50(4), 3444-3466, 2014.
    Rodell, M., Famiglietti, J. S., Wiese, D. N., Reager, J. T., Beaudoing, H. K., Landerer, F. W., and Lo, M. H., Emerging trends in global freshwater availability, Nature, 557, 651–659, 2018.
    Roques, C., Rupp, D. E., and Selker, J. S., Improved streamflow recession parameter estimation with attention to calculation of− dQ/dt, Advances in Water Resources, 108, 29-43, 2017.
    Safeeq, M., Grant, G. E., Lewis, S. L., Kramer, M. G., and Staab, B., A hydrogeologic framework for characterizing summer streamflow sensitivity to climate warming in the Pacific Northwest, USA, Hydrology and Earth System Sciences, 18(9), 3693, 2014.
    Safeeq, M., Grant, G. E., Lewis, S. L., and Tague, C. L., Coupling snowpack and groundwater dynamics to interpret historical streamflow trends in the western United States, Hydrological Processes, 27(5), 655-668, 2013.
    Sahoo, S., Russo, T. A., Elliott, J., and Foster, I., Machine learning algorithms for modeling groundwater level changes in agricultural regions of the US, Water Resources Research, 53(5), 3878-3895, 2017.
    Sánchez-Murillo, R., Brooks, E. S., Elliot, W. J., Gazel, E., and Boll, J., Baseflow recession analysis in the inland Pacific Northwest of the United States, Hydrogeology Journal, 23(2), 287-303, 2015.
    Sankarasubramanian, A., Vogel, R. M., and Limbrunner, J. F., Climate elasticity of streamflow in the United States, Water Resources Research, 37(6), 1771-1781, 2001.
    Santos, R. M. B., Fernandes, L. S., Moura, J. P., Pereira, M. G., and Pacheco, F. A. L., The impact of climate change, human interference, scale and modeling uncertainties on the estimation of aquifer properties and river flow components, Journal of hydrology, 519, 1297-1314, 2014.
    Savenije, H. H. G., Hoekstra, A. Y., Van der Zaag, P., Evolving water science in the Anthropocene, Hydrology and Earth System Sciences, 18, 319-332, 2014.
    Sayama T., McDonnell J.J., Dhakal A., Sullivan K., How much water can a watershed store?, Hydrological Processes, 25(25), 3899-3908, 2011.
    Schaake, J.C., and Chunzhen, L., Development and application of simple water balance models to understand the relationship between climate and water resources. New directions for surfacewater modeling (Proceedings of a Baltimore Symposium), International Association of Hydrological Sciences Publication, Wallingford, Oxfordshire, England, 181, 343–352. 1989.
    Seyfried, M. S., Grant, L. E., Marks, D., Winstral, A., and McNamara, J., Simulated soil water storage effects on streamflow generation in a mountainous snowmelt environment, Idaho, USA, Hydrological Processes, 23(6), 858-873, 2009.
    Shaw, S. B., Investigating the linkage between streamflow recession rates and channel network contraction in a mesoscale catchment in New York state, Hydrological Processes, 30(3), 479-492, 2016.
    Smakhtin, V. U., Low flow hydrology: a review, Journal of hydrology, 240(3-4), 147-186, 2001.
    Spence, C., On the relation between dynamic storage and runoff: A discussion on thresholds, efficiency, and function, Water Resources Research, 43(12), 1–11, 2007.
    Staudinger, M., Stoelzle, M., Seeger, S., Seibert, J., Weiler, M., and Stahl, K., Catchment water storage variation with elevation, Hydrological Processes, 31(11), 2000-2015, 2017.
    Steffen, W., Richardson, K., Rockström, J., Cornell, S. E., Fetzer, I., Bennett, E. M., Biggs, R., Carpenter, S. R., Vries, W., Wit, C. A., Folke, C., Gerten, D., Heinke, J., Mace, G. M., Persson, L. M., Ramanathan, V., Reyers, B., Sörlin, S., and Folke, C., Planetary boundaries: Guiding human development on a changing planet, Science, 347(6223), 1259855, 2015.
    Stoelzle, M., Stahl, K., Morhard, A., and Weiler, M., Streamflow sensitivity to drought scenarios in catchments with different geology, Geophysical Research Letters, 41(17), 6174-6183, 2014.
    Stoelzle, M., Stahl, K., Weiler, M., Are streamflow recession characteristics really characteristic?, Hydrology and Earth System Sciences, 17(2), 817-828, 2013.
    Sugita, M., and Brutsaert W., Recent Low-Flow and Groundwater Storage Changes in Upland Watersheds of the Kanto Region, Japan, Journal of Hydrologic Engineering, 14, 280-285, 2009.
    Szilagyi, J., Gribovszki, Z., and Kalicz, P., Estimation of catchment-scale evapotranspiration from baseflow recession data: Numerical model and practical application results, Journal of hydrology, 336(1-2), 206-217, 2007.
    Taylor, R. G., Scanlon, B., Döll, P., Rodell, M., Van Beek, R., Wada, Y., Longuevergne, L., Leblanc, M., Famiglietti, J. S., Edmunds, M., Konikow, L., Green, T. R., Chen, J., Taniguchi, M., Bierkens, M. F. P., MacDonald, A., Fan, Y., Maxwell, R. M., Yechieli, Y., Gurdak, J. J., Allen, D. M., Shamsudduha, M., Hiscock, K., Yeh, P. J. F., Holman, I., and Treidel, H., Ground water and climate change, Nature Climate Change, 3(4), 322, 2013.
    Thomas, B. F., Vogel, R. M., Kroll, C. N., and Famiglietti, J. S., Estimation of the base flow recession constant under human interference, Water Resources Research, 49(11), 7366-7379, 2013.
    Van Dijk, A. I. J. M., Climate and terrain factors explaining streamflow response and recession in Australian catchments, Hydrology and Earth System Sciences, 14(1), 159-169, 2010.
    Vannier, O., Braud, I., and Anquetin, S., Regional estimation of catchment‐scale soil properties by means of streamflow recession analysis for use in distributed hydrological models, Hydrological Processes, 28(26), 6276-6291, 2014.
    Vörösmarty, C. J., Green, P., Salisbury, J., and Lammers, R. B., Global water resources: vulnerability from climate change and population growth, Science, 289(5477), 284-288, 2000.
    Wada, Y., Van Beek, L. P., Van Kempen, C. M., Reckman, J. W., Vasak, S., and Bierkens, M. F., Global depletion of groundwater resources, Geophysical research letters, 37, L20402, 2010.
    Wang, D., On the base flow recession at the Panola mountain research watershed, Georgia, United States, Water Resources Research, 47(3), W03527, 2011.
    Wang, D., and Cai, X., Detecting human interferences to low flows through base flow recession analysis, Water Resources Research, 45, W07426, 2009.
    Wang, D., and Cai, X., Comparative study of climate and human impacts on seasonal baseflow in urban and agricultural watersheds, Geophysical Research Letters, 37(6), L06406, 2010a.
    Wang, D., and Cai, X., Recession slope curve analysis under human interferences, Advances in Water Resources, 33(9), 1053-1061, 2010b.
    Ward, A. S., Schmadel, N. M., Wondzell, S. M., Harman, C., Gooseff, M. N., and Singha, K., Hydrogeomorphic controls on hyporheic and riparian transport in two headwater mountain streams during base flow recession, Water Resources Research, 52(2), 1479-1497, 2016.
    Water Resources Agency, Basic Plan of The Regulation Scheme in Bazhang river, Water Resources Agency, Republic of China, Taipei, 1986. (in Chinese)
    Water Resources Agency, Hydraulic Statistic Message, Water Resources Agency, Republic of China, Taipei, 2000a. (in Chinese)
    Water Resources Agency, Planning of Drainage System and Environment Rehabilitation of Yanshuei-chi Drainage in Tainan Area, Water Resources Agency, Taipei, Republic of China, 2000b. (in Chinese)
    Water Resources Agency, Development of geomorphic and hydrologic information inquiry system for integrated basin management of major rivers in Taiwan (1/5), Water Resources Agency, Taipei, Republic of China, 2004. (in Chinese)
    Water Resources Agency, The Regulation and Management Scheme in The Upstream of Laonong River, Water Resources Agency, Taipei, Republic of China, 2007. (in Chinese)
    Water Resources Agency, 2014 Annual report on Taiwan water use statistics, Water Resources Agency, Taipei, Republic of China, 2014. (in Chinese)
    Water Resources Agency, Hydrological year book, Water Resources Agency, Taipei, Republic of China, 2015. (in Chinese)
    Water Resources Agency, The Third Stage Management Project of Climate Change Impacts and Adaptation on Water Environment (3/5), Water Resources Agency, Taipei, Republic of China, 2016. (in Chinese)
    Water Resources Agency. Assessment of groundwater potential exploiting zones and groundwater yields in Kaoping and Chianan Watersheds (2/2). 2017. (in Chinese)
    Weiskel, P. K., Vogel, R. M., Steeves, P. A., Zarriello, P. J., DeSimone, L. A., and Ries, K. G., Water use regimes: Characterizing direct human interaction with hydrologic systems. Water Resources Research, 43(4), W04402, 2007.
    Wittenberg, H., Baseflow recession and recharge as nonlinear storage processes, Hydrological Processes, 13(5), 715-726, 1999.
    Wu, Y. C., Chen, Y. M., Chu, J. L., Taiwan's climate change trend, NARL Quarterly, (25), 40-46, 2010. (in Chinese)
    Xiang, L., Wang, H., Steffen, H., Wu, P., Jia, L., Jiang, L., and Shen, Q., Groundwater storage changes in the Tibetan Plateau and adjacent areas revealed from GRACE satellite gravity data, Earth and Planetary Science Letters, 449, 228-239, 2016.
    Xu, X., Scanlon, B. R., Schilling, K., and Sun, A., Relative importance of climate and land surface changes on hydrologic changes in the US Midwest since the 1930s: Implications for biofuel production, Journal of hydrology, 497, 110-120, 2013.
    Zecharias, Y. B., and Brutsaert, W., Recession characteristics of groundwater outflow and base flow from mountainous watersheds, Water Resources Research, 24(10), 1651-1658, 1988.
    Zhang, L., Brutsaert, W., Crosbie, R., and Potter, N., Long-term groundwater storage trends in Australian catchments. Advances in Water Resources, 74, 156-165, 2014.
    Zhang, J., Gao, G., Fu, B., and Zhang, L., Explanation of climate and human impacts on sediment discharge change in Darwinian hydrology: Derivation of a differential equation, Journal of Hydrology, 559, 827-834, 2018a.
    Zhang, L., Zhao, F.F., Chen, Y., and Dixon, R.N.M., Estimating effects of plantation expansion and climate variability on streamflow for catchments in Australia, Water Resource Research, 47, W12539, 2011.
    Zhao, F.F., Zhang, L., Xu, Z.X., and Scott, D.F., Evaluation of methods for estimating the effects of vegetation change and climate variability on streamflow, Water Resources Research, 46, W03505, 2010.

    下載圖示 校內:2022-06-25公開
    校外:2022-06-25公開
    QR CODE