| 研究生: |
李孟庭 Lee, Meng-Ting |
|---|---|
| 論文名稱: |
以InVEST模型模擬紅樹林擴張對生態系統服務的影響與權衡研究—以鹿耳門鷸鴴科保護區為例 The Impact of Mangrove Expansion on Ecosystem Services Using the InVEST Model:A Case Study of the Sandpiper Ecological Protection Area in the Sicao Wildlife Reserve |
| 指導教授: |
王筱雯
Wang , Hsiao-Wen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 111 |
| 中文關鍵詞: | 生態系統服務 、濕地管理 、InVEST模型 、沿海藍碳 、季產水量 、棲地品質 |
| 外文關鍵詞: | Ecosystem Services, Wetland Management, InVEST Model , Habitat Quality, Coastal Blue Carbon, Seasonal Water Yield |
| 相關次數: | 點閱:51 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年隨著氣候變遷導致極端天氣事件頻發,對生態系統造成重大衝擊,為兼具碳儲、棲地與水文調節等多重功能的自然生態系統,已成為對應氣候變遷的重要焦點。然而,隨著濕地的動態發展及物種組成變化,濕地內部各項生態系統服務間可能產生權衡效應,何透過適當管理達成多項生態服務協同提升,成為一項重要挑戰。
本研究以生態系統服務為理論基礎,擇定臺南四草野生動物保護區(Sicao Wildlife Reserve)中鹿耳門鷸鴴科生態保護區作為研究區域(以下簡稱研究區),該區為許多野生動植物的重要棲地,同時也是東亞與紐澳候鳥遷移路線的中繼站,具有重要生態價值,且研究區內紅樹林物種更成就其獨特的濕地生態系統;研究首先進行基礎資料調查,並援引台江國家公園管理處(2023)以RAWES方法建立之現況服務評估成果為基礎,並進一步採用InVEST模型中「棲地品質」、「沿海藍碳」、「季產水量」三個子模型,設計以海茄苳(Avicennia marina)為區內強勢物種的紅樹林擴張與植群管理情境,模擬不同土地覆蓋條件對各項生態系統服務的影響,探討紅樹林空間配置與碳匯、水文條件及棲地結構間之互動關係。
研究發現,以海茄苳為主的紅樹林面積增加未顯著提升碳儲存總量,反因壓縮泥灘地、鹽沼水域與潮溝等棲地空間,而降低棲地品質、水文連通性受阻,並降低地下水補注與洪水調節功能。相較之下,適度縮減紅樹林覆蓋率在地形調整所引發的水文條件變化下,透過導入本地水文依賴性差異顯著的紅樹林物種,進行混合植栽,有助於創造多樣的微棲地環境,進一步提升棲地異質性與生物多樣性,穩定碳庫並強化水文調節服務。
本研究運用空間模擬方法,提出量化分析成果,有助於支持紅樹林濕地的生態系統服務綜合評估與多目標規劃,可作為未來濕地經營管理之科學依據,以促進紅樹林濕地永續管理與生態服務整體效益之提升。
Mangrove wetlands provide critical ecosystem services, including carbon sequestration, hydrological regulation, and habitat provision. However, as wetland systems undergo dynamic changes and species composition shifts, internal trade-offs between ecosystem services may emerge, such as habitat degradation, hydrological obstruction, and unstable soil carbon dynamics. To address these challenges, this study applied the InVEST model to simulate the impacts of four land management scenarios on ecosystem services in the Sandpiper Ecological Protection Area, southwestern Taiwan.
Simulation results showed that Scenario S1, with 50% mangrove expansion, increased biomass but significantly reduced habitat quality and water recharge, raising flood risk. Scenario S2, which reduced mangrove cover to 30%, improved groundwater infiltration and yielded the highest total carbon storage by reducing dominance of high carbon-loss species. Scenario S3, which retained 40% coverage but introduced mixed planting of Rhizophora stylosa and Lumnitzera racemosa alongside hydrological adjustments, achieved the most balanced outcomes, enhancing habitat diversity, hydrological connectivity, and carbon stability.
The study confirms that simply increasing mangrove area is insufficient for long-term service optimization. Integrated strategies—incorporating species composition, terrain configuration, and water connectivity—are essential. InVEST modeling provided a spatial and quantitative basis for evaluating service trade-offs, supporting adaptive and multi-objective management for sustainable wetland planning.
1. Analuddin, K., Kadidae, L. O., Haya, L. O. M. Y., Septiana, A., Sahidin, I., Syahrir, L., Rahim, S., Fajar, L. O. A., & Nadaoka, K. (2020). Aboveground biomass, productivity and carbon sequestration in Rhizophora stylosa mangrove forest of Southeast Sulawesi, Indonesia. Biodiversitas, 21(4), 1316-1325.
2. Authority, M. D. B. (2014). Basin-wide environmental watering strategy. MDBA: Canberra, ACT, Australia.
3. Alongi, D. M. (2002). Present state and future of the world's mangrove forests. Environmental Conservation, 29(3), 331-349.
4. Alongi, D. M. (1988). Bacterial productivity and microbial biomass in tropical mangrove sediments. Microbial Ecology, 15, 59-79.
5. Alongi, D. (2009). The energetics of mangrove forests. Springer Science & Business Media.
6. Assessment, M. E. (2005). Ecosystems and human well-being: wetlands and water. World Resources Institute.
7. Booty, J. M., Underwood, G. J., Parris, A., Davies, R. G., & Tolhurst, T. J. (2020). Shorebirds affect ecosystem functioning on an intertidal mudflat. Frontiers in Marine Science, 7, 685.
8. Bourgeois, C. F., MacKenzie, R. A., Sharma, S., Bhomia, R. K., Johnson, N. G., Rovai, A. S., Worthington, T. A., Krauss, K. W., Analuddin, K., & Bukoski, J. J. (2024). Four decades of data indicate that planted mangroves stored up to 75% of the carbon stocks found in intact mature stands. Science Advances, 10(27), eadk5430.
9. Comegna, A. (2024). Wetland Hydrology Exploring the Role of Water in Wetland Ecosystems. Hydrology Current Research, 15(2). https://doi.org/10.37421/2157-7587.2024.15.515
10. Costanza, R., d'Arge, R., De Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., O'neill, R. V., & Paruelo, J. (1997). The value of the world's ecosystem services and natural capital. Nature, 387(6630), 253-260.
11. Costanza, R., De Groot, R., Sutton, P., Van der Ploeg, S., Anderson, S. J., Kubiszewski, I., Farber, S., & Turner, R. K. (2014). Changes in the global value of ecosystem services. Global Environmental Change, 26, 152-158.
12. da Cunha Lana, P., & Guiss, C. (1991). Influence of Spartina alterniflora on structure and temporal variability of macrobenthic associations in a tidal flat of Paranaguá Bay (southeastern Brazil). Marine Ecology Progress Series, 73(2-3), 231-244.
13. Daily, G. (1998). Nature's services: societal dependence on natural ecosystems. Environmental Values, 7(3).
14. Delevaux, J., Jupiter, S., Stamoulis, K., Bremer, L., Wenger, A., Dacks, R., Garrod, P., Falinski, K., & Ticktin, T. (2018). Scenario planning with linked land-sea models inform where forest conservation actions will promote coral reef resilience. Scientific reports, 8(1), 12465.
15. Ehrlich, P. (1981). Extinction: the causes and consequences of the disappearance of species. In: Random House.
16. Fisher, B., Turner, R. K., & Morling, P. (2009). Defining and classifying ecosystem services for decision making. Ecological economics, 68(3), 643-653.
17. Forman, R. (1995). Land Mosaics: The Ecology of Landscapes and Regions. Cambridge Univ Press, New York.
18. Froneman, A., Mangnall, M. J., Little, R. M., & Crowe, T. M. (2001). Waterbird assemblages and associated habitat characteristics of farm ponds in the Western Cape, South Africa. Biodiversity & Conservation, 10(2), 251-270.
19. Gardner, R. C., Barchiesi, S., Beltrame, C., Finlayson, C., Galewski, T., Harrison, I., Paganini, M., Perennou, C., Pritchard, D., & Rosenqvist, A. (2015). State of the world's wetlands and their services to people: a compilation of recent analyses.
20. Golden, H. E., Lane, C. R., Amatya, D. M., Bandilla, K. W., Kiperwas, H. R., Knightes, C. D., & Ssegane, H. (2014). Hydrologic connectivity between geographically isolated wetlands and surface water systems: A review of select modeling methods. Environmental Modelling & Software, 53, 190-206.
21. Haig, S. M., Mehlman, D. W., & Oring, L. W. (1998). Avian movements and wetland connectivity in landscape conservation. Conservation biology, 12(4), 749-758.
22. Haines-Young, R., & Potschin, M. (2010). The links between biodiversity, ecosystem services and human well-being. Ecosystem Ecology: a new synthesis, 1, 110-139.
23. Halls, A. (1997). Wetlands, biodiversity and the Ramsar convention: the role of the convention on wetlands in the conservation and wise use of biodiversity. Ramsar Convention Bureau, Gland, Switzerland,
24. Hogarth, P. J. (2015). The biology of mangroves and seagrasses. Oxford university press.
25. Horstman, E. M., Lundquist, C. J., Bryan, K. R., Bulmer, R. H., Mullarney, J. C., & Stokes, D. J. (2018). The dynamics of expanding mangroves in New Zealand. Threats to mangrove forests: hazards, vulnerability, and management, 23-51.
26. Intergovernmental Panel on Climate Change (IPCC). (2019). Special report on the ocean and cryosphere in a changing climate. Cambridge University Press.
27. Islam, M. A., Idris, M. H., Bhuiyan, M. K. A., Ali, M. S., Abdullah, M. T., & Kamal, A. H. M. (2022). Floristic diversity, structure, and carbon stock of mangroves in a tropical lagoon ecosystem at Setiu, Malaysia. Biodiversitas Journal of Biological Diversity, 23(7).
28. Kathiresan, K., & Bingham, B. L. (2001) – "Biology of Mangroves and Mangrove Ecosystems".
29. Kauffman, J. B., Trejo, H. H., Bhomia, R. K., Vargas, R., & Feller, I. C. (2020). Total ecosystem carbon stocks of mangroves across broad global environmental and physical gradients. Ecological Monographs, 90(2), e01405.
30. Keddy, P. (2010). Wetland ecology principles and conservation (Vol. 614). Cambridge University Press.
31. Kelleway, J. J., Cavanaugh, K., Rogers, K., Feller, I. C., Ens, E., Doughty, C., & Saintilan, N. (2017). Review of the ecosystem service implications of mangrove encroachment into salt marshes. Global Change Biology, 23(10), 3967-3983.
32. Kodikara, K. A. S., Jayatissa, L. P., Huxham, M., Dahdouh-Guebas, F., Koedam, N.(2017)。The effects of salinity on growth and survival of mangrove seedlings changes with age. Acta Botanica Brasilica, 32(01), 37-46.
33. Kristensen, E., Bouillon, S., Dittmar, T., & Marchand, C. (2008). Organic carbon dynamics in mangrove ecosystems: a review. Aquatic botany, 89(2), 201-219.
34. Kuo, P. H., & Wang, H. W. (2018). Water management to enhance ecosystem services in a coastal wetland in Taiwan. Irrigation and Drainage, 67, 130-139.
35. Langan, C., Farmer, J., Rivington, M., & Smith, J. U. (2018). Tropical wetland ecosystem service assessments in East Africa; A review of approaches and challenges. Environmental Modelling & Software, 102, 260-273.
36. Lee, S. Y. (1999). Tropical mangrove ecology: Physical and biotic factors influencing ecosystem structure and function. Australian Journal of Ecology, 24(4), 355-366.
37. Lovelock, C. E., & Ellison, J. (2007). Vulnerability of mangroves and tidal wetlands of the Great Barrier Reef to climate change.
38. Lindenmayer, D., Hobbs, R., Montague-Drake, R., Alexandra, J., Bennett, A., Burgman, M., Cae, P., Calhoun, A., Cramer, V., & Cullen, P. (2008). A checklist for ecological management of landscapes for conservation. Ecology Letters, 11, 78-91.
39. Ma, Z., Cai, Y., Li, B., & Chen, J. (2010). Managing wetland habitats for waterbirds: an international perspective. Wetlands, 30, 15-27.
40. McLeod, E., et al. (2011). "A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2." Frontiers in Ecology and the Environment, 9(10), 552-560.
41. Millennium ecosystem assessment, M. (2005). Ecosystems and human well-being (Vol. 5). Island press Washington, DC.
42. Mitsch, W. J., & Gosselink, J. G. (2015). Wetlands. John wiley & sons.
43. Nagelkerken, I., Blaber, S. J. M., Bouillon, S., Green, P., Haywood, M., Kirton, L. G., ... & Somerfield, P. J. (2008). The habitat function of mangroves for terrestrial and marine fauna: A review. Aquatic Botany, 89(2), 155-185.
44. Nakahara, B. A., Demopoulos, A. W., Rii, Y. M., Alegado, R. A., Fraiola, K. M., & Smith, C. R. (2021). Introduced mangroves along the coast of Moloka ‘i, Hawai ‘i may represent novel habitats for megafaunal communities. Pacific Science, 75(2), 205-223.
45. Norhadi, H. I., Sulaiman, M. S., & Mokhtar, R. (2022). Cumulative zonation pattern of mangrove species in the landward site (A) and fringe island site (B) based on the present study. Biodiversitas Journal of Biological Diversity, 23(7), 3511-3520.
46. Noss, R. F., Connell, M. A., & Murphy, D. D. (1997). The Science of Conservation Planning: Habitat Conservation under the Endangered Species Act. Island Press.
47. Orsholm, J., & Elenius, M. (2022). Effects of hydrology on wetlandbiodiversity: A literature study and development of hydrological indicators.
48. Osland, M. J., Enwright, N., Day, R. H., & Doyle, T. W. (2013). Winter climate change and coastal wetland foundation species: salt marshes vs. mangrove forests in the southeastern United States. Global Change Biology, 19(5), 1482-1494.
49. Parida, A. K., & Jha, B. (2010). Salt tolerance mechanisms in mangroves: A review. Trees, 24(2), 199-217. https://doi.org/10.1007/s00468-010-0416-2
50. Project, N. C. (2023). InVEST 3.10.0 User’s Guide. In Stanford University, University of Minnesota, Chinese Academy of Sciences, The Nature Conservancy, World Wildlife Fund, Stockholm Resilience Centre, and the Royal Swedish Academy of Sciences. https://naturalcapitalproject.stanford.edu/software/invest
51. Ramsar Convention on Wetlands. (2018). The Ramsar Strategic Plan 2016-2024. Retrieved from https://www.ramsar.org/
52. Robertson, A. I., & Alongi, D. M. (2013). Tropical mangrove ecosystems (Vol. 41). American Geophysical Union.
53. Saintilan, N., Rogers, K., & McKee, K. L. (2014). The influence of climate change on the global distribution of mangroves. Frontiers in Ecology and the Environment, 12(5), 277–286. https://doi.org/10.1890/130194
54. Taft, O. W., & Haig, S. M. (2005). The value of agricultural wetlands as invertebrate resources for wintering shorebirds. Agriculture, Ecosystems & Environment, 110(3–4), 249–256.
55. Taiz, L., & Zeiger, E. (2006). Plant physiology sinauer associates. Inc., Sunderland, MA.
56. TEEB, R. O. (2010). Mainstreaming the Economics of Nature. TEEB Geneva, Switzerland.
57. Trisurat, Y.、Aekakkararungroj, A.、Ma, H.-o.、Johnston, J. M.(2018)。Basin-wide impacts of climate change on ecosystem services in the lower mekong basin。Ecological research,33,73-86.
58. Van der Stocken, T., Wee, A. K., De Ryck, D. J., Vanschoenwinkel, B., Friess, D. A., Dahdouh‐Guebas, F., Simard, M., Koedam, N., & Webb, E. L. (2019). A general framework for propagule dispersal in mangroves. Biological Reviews, 94(4), 1547-1575.
59. Verhoeven, J. T., Arheimer, B., Yin, C., & Hefting, M. M. (2006). Regional and global concerns over wetlands and water quality. Trends in ecology & evolution, 21(2), 96-103.
60. Westman, W. E. (1977). How Much Are Nature's Services Worth? Measuring the social benefits of ecosystem functioning is both controversial and illuminating. Science, 197(4307), 960-964.
61. Zedler, J. B., & Kercher, S. (2005). Wetland resources: status, trends, ecosystem services, and restorability. Annu. Rev. Environ. Resour., 30(1), 39-74.
62. 中華民國野鳥學會 (2022)。2022黑面琵鷺全球同步普查結果。中華民國野鳥學會。
63. 中興大學農學院土壤學出版系(1969)。臺南縣土壤調查報告。
64. 內政部(2018)。台江國家公園計畫(第1次通盤檢討)計畫書。
65. 內政部(2018)。20公尺網格數值地形模型資料。
66. 內政部(2018)。四草重要濕地(國際級)保育利用計畫書。
67. 王一匡(2019)。台江國家公園及其周緩衝區多樣性棲地營造與評估計畫。台江 國家公園管理委託辦理計畫。
68. 王虹婷(2018) 。不同時期土地利用生態系服務價值之比較評估〔碩士學位論文]。國立臺灣大學森林環境暨資源學研究所。
69. 王筱雯(2015)。嘉義縣103年度國家重要濕地保育行動計畫-布袋鹽田濕地及好美寮濕地水文生態環境與泥沙永續管理計畫。台江國家公園管理處及嘉義縣政府 委辦計畫。
70. 王筱雯(2019)。七股鹽田濕地水文生態環境永續管理計畫。台江國家公園管理委託辦理計畫。
71. 石心柔 (2020)。太陽光電開發對鹽田濕地生態系統服務影響性評估〔碩士學位論文]。國立成功大學水利及海洋工程學系。
72. 朱木壽(2020)。台江國家公園生態多樣性息地水地環境營造調控試驗示範計畫。 台江國家公園管理委託辦理計畫。
73. 李世博(2015)。臺南七股紅樹林碳收支模式〔碩士學位論文]。國立中興大學。
74. 林立中(2024)。沿海生態系統服務的變化情形評估-以彰化芳苑濕地土地覆蓋變遷影響為例〔碩士學位論文]。國立彰化師範大學地理學系。
75. 林宗志、黃俊傑、許芳瑞、翁義聰、王建平(2002)。乾旱末期吳郭魚在四草保護區的存活率。大自然,第77期,102-107。
76. 陳柏宏(2013)。淡水河紅樹林及草澤植物的碳儲存量與碳收支。〔碩士學位論文]。國立中興大學。
77. 姜鈴(1999)。四草野生動物保護區經營管理先期調查分析。
78. 施上粟、李鴻源、許志揚、游蕙綾、Shih, S.-s.、Lee, H.-y.、Hsu, C.-y.、Yu, H.-l. (2005)。關渡紅樹林植群變遷之衝擊評估。臺灣水利。53卷(210期)頁31- 41。
79. 范貴珠(2001)。安平港紅樹林復育三年之研究成果。林業研究專訊。18卷(4期)頁25-30。
80. 范貴珠(2006)。適用台南西之紅樹林造林技術。臺灣林業。32卷(1期)頁8-16。
81. 范貴珠(2007)。臺南市龍崗河道之紅樹林復育成效探討。臺灣林業。33卷(6 期)頁13-24。
82. 范貴珠、許博行、張峻德(2001)。土壤鹽度對欖李苗木光合作用之影響。林業研究季刊。23卷(3期)頁47-62。
83. 張騌麒(2008)。結構方程模式於探討水文指標與溪流生態系統關聯性之研究 〔博士學位論文]。國立成功大學水利及海洋工程學系碩博士班。
84. 梁世雄(2002)。 A structural equation model on physio-chemical variables of water, benthic invertebrates, and feeding activity fo waterbirds in Syhtsau wetlands of southern Taiwan.
85. 許立志(2009)。關渡自然保留區紅樹林變遷之研究〔碩士學位論文]。國立臺灣大學地理環境資源學研究所。
86. 鹿耳門天后宮。鹿耳門志節錄。https://www.luerhmen.org.tw/about_us.php?kind=1&class_id=56&item_id=150
87. 彭麗春 (2021)。因應氣候變遷之水文生態系統服務水資源管理調適方案〔博士學位論文]。國立臺灣大學生物環境系統工程學研究所。
88. 國家公園署台江國家公園管理處(2023)。鹿耳門鷸鴴科生態保護區及周緣濕地生態服務評析可行性示範計畫。
89. 國家公園署台江國家公園管理處(2024)。台江國家公園七股鹽田濕地生態系服務評析及應用研究計畫。
90. 經濟部水利署(2015)。臺灣地下水區可用水量調查分析及伏流水調查規劃先期作業。
91. 臺南市政府(1991)。臺南市(安南區)雨水下水道系統規劃報告。
92. 臺南市政府(2020)。臺南市四草野生動物保護區保育計畫書(修正版)。
93. 臺南市政府(2023)。「臺南市雨水下水道系統」檢討規劃報告。
94. 賴雪端、王建平、葉展廷、蔡宏韋(2003)。四草濕地藻類與腹足類之秋季演替。嘉南學報(29期)頁33-42。
95. 謝蕙蓮(2012)淡水河生態系生態功能及其生態服務價值評估--淡水河生態系生態功能及其生態服務價值評估。
校內:2030-05-09公開