簡易檢索 / 詳目顯示

研究生: 何承嚴
Ho, Cheng-Yen
論文名稱: 針對動態物件的高動態範圍影像合成及其系統單晶片探索
High Dynamic Range Image Synthesis and Its SOC Exploration for Dynamic Objects
指導教授: 賴源泰
Lai, Yen-Tai
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 78
中文關鍵詞: 動態範圍高動態範圍影像RAW影像
外文關鍵詞: Dynamic Range, High Dynamic Range Image, RAW Image
相關次數: 點閱:89下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於多媒體應用和數位視訊的快速發展,多媒體視訊變得越來越受歡迎。隨著人們對於圖像及影像的色彩品質越來越要求,高動態範圍影像已經顯然成為一個不可或缺的技術。在真實的世界中,景色的亮度差異是非常大的。我們的人眼可以同時觀察到整張影像的亮部與暗部。然而現在的相機,由於各種自動曝光、對焦演算法的規範下,即便能存取夠大的動態範圍,也很難在同一張照片中自動的分配適當的亮度。
    在本篇論文中,我們提出一個與傳統高動態範圍製作不一樣的概念。隨著現今數位感光元件和記憶體技術的進步,大量的紀錄所謂的RAW影像已經不是遙不可及的事情。由於人類的動態範圍大約是10-14級,然而RAW影像內含可記錄的動態範圍大約也為12-14級。因此利用這個概念,我們可以發展出一套針對動態物件拍攝的高動態範圍影像,可以完全改善掉過去演算法無法建立動態物件的高動態範圍影像的問題。最後將會把整個流程,以軟硬體協同合作,實現其單晶片架構探索。
    實驗結果顯示我們提出的方法可以有效地得到動態物件的高動態範圍影像,未來將有助於高動態範圍影片及即時同步的相關發展。

    Owing to the rapid development of multimedia applications and digital video, the multimedia video has become more and more popular. As people demand that the color quality of images and videos increasingly, High Dynamic Range Image has apparently become an indispensable technology. In real world, the dynamic range is quite high. Human Visual System can accommodate high dynamic range. However digital camera due to the auto exposure algorithm and auto focus algorithm, even it can record large dynamic range, it is difficult in the same photo automatically assign the appropriate brightness.
    In this thesis, we propose a novel method for creation of High Dynamic Range Image. Because of the progress of the CCD/CMOS and Memory technology, record a lot of RAW images is feaxible. Because the human dynamic range is about 10 – 14 stops, and the RAW image can record the dynamic range is about 12 – 14 stops. Hence, we can develop a method for High Dynamic Range creation for dynamic objects which is better than the tradition algorithm defect. Finally, we will explore the SOC architecture for this new approach.
    Simulation results show that our proposed algorithm can achieve the HDR image for dynamic objects, it will help HDR video and real-time development in the future.

    ABSTRACT IV LIST OF TABLES IX LIST OF FIGURES X Chapter 1 Introduction 1 1.1 Traditional High Dynamic Range Image 1 1.2 The Disadvantages of Traditional High Dynamic Range Image 4 1.3 The Proposed High Dynamic Range Image Creation Approach 4 1.4 Thesis Organization 6 Chapter 2 Background 7 2.1 Human Visual System 7 2.2 Image Acquisition Pipeline 8 2.3 Dynamic Range 10 2.4 HDR Image Formats 10 2.5 HDR Image Applications 12 2.6 RAW Image 15 2.7 Exposure Value 18 2.8 Camera Response Function 21 2.9 Tone Reproduction Operators 22 Chapter 3 Related Works 24 3.1 RAW Image Decode 24 3.2 Recovering High Dynamic Range Radiance Maps from Photographs 26 3.3 Photographic Tone Reproduction Algorithm 29 3.4 Lapray, Pierre-Jean et al. Technique 34 3.5 Ching-Te Chiu et al. Technique 36 Chapter 4 Proposed Algorithm and It Hardware Implement 38 4.1 Proposed Algorithm Concepts 38 4.2 Proposed Algorithm 38 4.2.1 Virtual Image System 41 4.2.2 Recovering the Virtual Radiance Map 44 4.2.2.1 Pre-creating Film Response Curve 44 4.2.2.2 Constructing the High Dynamic Range Radiance Map 47 4.2.3 Photographic Tone Reproduction Algorithm 48 4.2.3.1 Calibration 48 4.2.3.2 Tone Mapping 50 4.3 Architecture Exploration 51 4.3.1 The HDR System 52 4.3.2 Pipelined Architecture for HDR Synthesis 53 4.3.2.1 Stage 1 of Pipelined Architecture 54 4.3.2.2 Stage 2 of Pipelined Architecture 55 4.3.2.3 Stage 3 of Pipelined Architecture 62 Chapter 5 Experimental Results 64 5.1 Experimental Platform 64 5.2 Comparison of Static Object with Other Methods 66 5.3 Comparison of Dynamic Object with Other Methods 68 5.4 Hardware Synthesis Results 70 Chapter 6 Conclusion 72 REFERENCES 73

    [1] S. Decker, D. McGrath, K. Brehmer, and C. Sodini, “A 256 × 256 CMOS imaging array with wide dynamic range pixels and columnparallel digital output,” IEEE Journal of Solid-State Circuits, vol. 33, no. 12, pp. 2081 –2091, Dec 1998.

    [2] D. Stoppa, A. Simoni, L. Gonzo, M. Gottardi, and G.-F. Dalla Betta, “A 138 dB dynamic range CMOS image sensor with new pixel architecture,” in IEEE International Solid-State Circuits Conference (ISSCC), Digest of Technical Papers, vol. 1, Feb 2002, pp. 40–442.

    [3] L. McIlrath, “A low-power low-noise ultrawide-dynamic-range CMOS imager with pixel-parallel A/D conversion,” IEEE Journal of Solid-State Circuits, vol. 36, no. 5, pp. 846 –853, May 2001.

    [4] S. Kavusi and A. El Gamal, “A quantitative study of high dynamic range image sensor architectures,” in Proceedings of the SPIE Electronic Imaging ’04 Conference, vol. 5301, Jan 2004, pp. 264–275.

    [5] O. Yadid-Pecht and A. Belenky, “In-Pixel Autoexposure CMOS APS,” IEEE Journal of Solid-State Circuits, vol. 38, no. 8, pp. 1425–1428, Aug 2003.

    [6] P. Acosta-Serafini, M. Ichiro, and C. Sodini, “A 1/3” VGA linear wide dynamic range CMOS image sensor implementing a predictive multiple sampling algorithm with overlapping integration intervals,” IEEE Journal of Solid-State Circuits, vol. 39, no. 9, pp. 1487–1496, Sept 2004.

    [7] M. Sakakibara, S. Kawahito, D. Handoko, N. Nakamura, M. Higashi, K. Mabuchi, and H. Sumi, “A high-sensitivity CMOS image sensor with gain-adaptative column amplifiers,” IEEE Journal of Solid-State Circuits, vol. 40, no. 5, pp. 1147–1156, May 2005.

    [8] A. Krymsky and T. Niarong, “A 9-V/Lux 5000-frames/s 512 × 512 CMOS sensor,” IEEE Transactions on Electron Devices, vol. 50, no. 1, pp. 136–143, Jan 2003.

    [9] G. Cembrano, A. Rodriguez-Vazquez, R. Galan, F. Jimenez-Garrido, S. Espejo, and R. Dominguez-Castro, “A 1000 FPS at 128 × 128 vision processor with 8-bit digitized I/O,” IEEE Journal of Solid-State Circuits, vol. 39, no. 7, pp. 1044–1055, Jul 2004.

    [10] L. Lindgren, J. Melander, R. Johansson, and B. Mller, “A multiresolution 100-GOPS 4-Gpixels/s programmable smart vision sensor for multisense imaging,” IEEE Journal of Solid-State Circuits, vol. 40, no. 6, pp. 1350–1359, Jun 2005.

    [11] Y. Sugiyama, M. Takumi, H. Toyoda, N. Mukozaka, A. Ihori, T. kurashina, Y. Nakamura, T. Tonbe, and S. Mizuno, “A high-speed CMOS image sensor with profile data acquiring function,” IEEE Journal of Solid-State Circuits, vol. 40, no. 12, pp. 2816–2823, Dec 2005.

    [12] J. Dubois, D. Ginhac, M. Paindavoine, and B. Heyrman, “A 10 000 fps CMOS sensor with massively parallel image processing,” IEEE Journal of Solid-State Circuits, vol. 43, no. 3, pp. 706–717, Mar 2008.

    [13] P. E. Debevec and J. Malik, “Recovering high dynamic range radiance maps from photographs”, Proc. ACM SIGGRAPH’97, pp. 369 – 378, 1997

    [14] T. Mitsunaga and S. K. Nayar, “High dynamic range imaging: Spatially varying pixel exposures”, Proc. CVPR’2000, vol. 1, pp. 472-479, 2000

    [15] S. B. Kang, M. Uyttendale, S. Winder and R. Szeliski, “High dynamic range video”, ACM Transactions on Graphics, vol.22, no. 3, Pages: 319 – 325, July 2003

    [16] E. Reinhard, M. Stark, P. Shirley, and J. Ferwerda, “Photographic tone reproduction for digital images,” ACM Transactions on Graphics, vol. 21, no. 3, pp. 267–276, 2002.

    [17] M. A. Robertson, S. Borman, and R. L. Stevenson, “Estimationtheoretic approach to dynamic range enhancement using multiple exposures,” Journal of Electronic Imaging, vol. 12(2), pp. 219–228, 2003.

    [18] W. S. G. Yourganov, “Acquiring high dynamic range video at video rates,” Acquiring High Dynamic Range Video at Video Rates, Tech. Rep., 2001.

    [19] F. Durand and J. Dorsey, “Fast bilateral filtering for the display of high-dynamic-range images,” ACM Trans. Graph., vol. 21, pp. 257–266, July 2002.

    [20] C. G. Jiang Duan, MarcoBressan, “Tone-mapping high dynamic range images by novel histogram adjustment,” Pattern Recognition, vol. 43, pp. 1847–1862, 2010.

    [21] M. W. Raanan Fattal, Dani Lischinski, “Gradient domain high dynamic range compression,” School of Computer Science and Engineering The Hebrew University of Jerusalem, Tech. Rep., 2002.

    [22] S. N. Pattanaik, J. Tumblin, H. Yee, and D. P. Greenberg, “Time-dependent visual adaptation for fast realistic image display,” in Proceedings of the 27th annual conference on Computer graphics and interactive techniques, ser. SIGGRAPH ’00. New York, NY,
    USA: ACM Press/Addison-Wesley Publishing Co., 2000, pp. 47–54. [Online]. Available:

    [23] T. A. F. Drago, K. Myszkowski and N. Chiba, “Adaptive logarithmic mapping for displaying high contrast scenes,” EUROGRAPHICS 2003/ P. Brunet and D. Fellner, vol. Volume 22 (2003), Number 3, no. 3, pp. xx – xx, 2003.

    [24] J.E. Dowling, The Retina: An Approachable Part of the Brain. Harvard Univ. Press, 1987.

    [25] D.A. Baylor and M.G.F. Fuortes, “Electrical Responses of Single Cones in the Retina of the Turtle,” J. Physiology, vol. 207, pp. 77-92, 1970.

    [26] J. Kleinschmidt and J.E. Dowling, “Intracellular Recordings from Gecko Photoreceptors during Light and Dark Adaptation,” J gen Physiology, vol. 66, pp. 617-648, 1975.

    [27] K.I. Naka and W.A.H. Rushton, “S-Potentials from Luminosity Units in the Retina of Fish (Cyprinidae),” J. Physiology, vol. 185, pp. 587-599, 1966.

    [28] R.A. Normann and I. Perlman, “The Effects of Background Illumination on the Photoresponses of Red and Green Cones,” J. Physiology, vol. 286, pp. 491-507, 1979.

    [29] R. J. Deeley, N. Drasdo, and W. N. Charman. “A Simple Parametric Model of the Human Ocular Modulation Transfer Function, “ Opthalmology and Physiological Optics, 11:91-93, 1991.

    [30] G. Wyszecki and W. S. Stiles. Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed., New York: John Wiley & Sons, 2000.

    [31] G, J, Ward, “The RADIANCE Lighting Simulation and Rendering System,” in A. Glassner (ed.), Proceedings of SIGGRAPH ’94, PP. 459-472, 1994.

    [32] G. Ward, H. Rushmeier, and C. Piatko. “A Visibility Matching Tone Reproduction Operator for High Dynamic Range Scenes,” IEEE Tractions on Visualization and Computer Graphics, 3(4):291-306, 1997.

    [33] T. M. Lillesand and R. W. Kiefer and J. Chipman, Remote Sensing and Image Interpretation 6th ed. New York: John Wiley & Sons, 1994.

    [34] Adobe. Digital negative (DNG), 2004, http://www.adobe.com/prodcuts/dng/main.html

    [35] J. Munkberg, P. Clarberg, J. Hasselgren, and T. Akenine-Mӧller. “Practical HDR Texture Compression, “ Computer Graphics Forum, 27(6):1664-1676, 2008.

    [36] Adams, Ansel. 1981. The Negative. Boston: New York Graphic Society. ISBN 0-8212-1131-5

    [37] G.S. Miller and C. R. Hotffman, “Illumination and ReflectionMaps : Simulated Object in Simulated and Real Environments”, SIGGRAPH 84 Course Notes for Advanced Computer Graphics Animation, July,1984.

    [38] J. Tumblin and H. Rushmeier, “ Tone Reproduction for Computer Generated Image”, IEEE Computer Graphics and Application, pp42-48, November ,1993.
    [39] K. Chiu, M.Herf, P.Shirley,. S. Swamy, C. Wang, and K. Zimmerman, “ Spatially Nonumuniform Scaling Function for High Contrast Images”, in Proceeding of Graphics Interface ’93, pp.245-253, May 1993.

    [40] M. Ashikhmin, “A Tone Mapping Algorithm for High Contrast Images”, Proceeding of 13 th Eurographics Work shop on Rendering , pp.145-155, 2002.

    [41] R. Fattal , D. Lischinski, and M. Werman., “ Gradient Domain High Dynamic Range Compression”, ACM Trans. on Graphics, pp.249-256, 2002.

    [42] E. Reinhard, G. Ward, S. Pattanaik, and P. Debevec “High Dynamic Range Imaging”, Morgan Kanfmann.

    [43] S. Mann and R. W. Picard. “Being Undigital with Digital Cameras: Extending Dynamic Range by Combing Differently Exposed Pictures,” in IS&T’s 48th Annual Conference, pp. 422-428, Springfield, VA, 1995.

    [44] E. Reinhard. “Parameter Estimation for Photographic Tone Reproduction, “ Journal of Graphics Tools, 7(1):45-51, 2003.

    [45] Pierre-Jean Lapray, Barthel´ emy Heyrman , Matthieu Rosse and Dominique Ginhac “High Dynamic Range Real-time Vision System for Robotic Applications” in “IEEE Intelligent Robots and System (IROS), Villamoura : Portugal (2012)”.

    [46] C.-T. Chiu, T.-H. Wang, W.-M. Ke, C.-Y. Chuang, J.-S. Huang, W.-S. Wong, R.-S. Tsay, and C.-J. Wu, “Real-time tone-mapping processor with integrated photographic and gradient compression using 0.13μm technology on an ARM SoC platform,” Journal of Signal Processing Systems, vol. 64, no. 1, pp. 93-107, 2010.

    [47] M. Cadik, M. Wimmer, L. Neumann, and A.artusi, “Evaluation of HDR tone mapping methods using essential perceptual attributes,” Computers & Graphics, vol. 32, pp. 330-349, 2008.

    [48] V. Kantabutra, “On Hardware for Computing Exponential and Trigonometric Functions”, IEEE Trans, Computers, vol. 45, No. 3, March 1996.

    [49] C. S. McCamy, H. Marcus, and J. G. Davidson (1976). “ A Color-Rendition Chart”. Journal of Applied Photographic Engineering 2(3). 95-99.

    下載圖示 校內:2024-07-16公開
    校外:2024-07-16公開
    QR CODE