簡易檢索 / 詳目顯示

研究生: 黃怡文
Huang, I-Wen
論文名稱: 自組裝苯乙硫醇單分子層吸附在Au圖案及沉積TiO2的玻璃表面使具有光觸媒強化效果之研究
Study of photocatalytic effect enhanced by phenylethyl mercaptan assembled monolayers adsorbed on the patterned Au and deposited on the TiO2-coated glass substrate
指導教授: 廖峻德
Liao, Jiunn-Der
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米科技暨微系統工程研究所
Institute of Nanotechnology and Microsystems Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 67
中文關鍵詞: 二氧化鈦銳鈦礦相薄膜光觸媒效果溶膠凝膠法效率
外文關鍵詞: sol-gel method, Au, TiO2-anatase thin film, efficiency, Photo-catalytic effect
相關次數: 點閱:118下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用溶膠凝膠法以異丙氧鈦為起始物,在低溫下(< 80 ℃)製作出高穿透率的二氧化鈦銳鈦礦相薄膜於玻璃基板上。之後,在局部二氧化鈦薄膜表面沉積金顆粒。為增進光觸媒作用,於局部金/二氧化鈦表面化學吸附苯乙硫醇自組裝單分子層。在局部二氧化鈦薄膜表面,選擇三種不同比率的沉積金顆粒的覆蓋面積,約為3.77 %、15.58 %、以及41.97 %。金局部覆蓋於二氧化鈦表面乃考量到外露二氧化鈦的表面積。

    利用低掠角X光繞射分析儀以及拉曼散射光譜儀分析薄膜晶體結構,以掃描式電子顯微鏡以及原子力顯微鏡分析薄膜表面形貌;以X光光電子能譜儀分析薄膜表面化學組成,以歐傑電子能譜儀分析薄膜深度分析,最後以亞甲基藍降解試驗評估光觸媒薄膜的效能。外露二氧化鈦表面積及苯乙硫醇自組裝單分子層的吸附量會受到金的覆蓋率改變而影響。

    在金/二氧化鈦的試片,其光觸媒效能測試結果依覆蓋面積比率表示為15.58 % > 41.97 % > 3.77 %,適度的金覆蓋面積可預期地減少電子與電洞對的合併機率。另一方面,苯乙硫醇自組裝單分子層吸附於金/二氧化鈦表面,能增強光觸媒效果,依序為:3.77 % >15.58 % > 41.97 %。此顯示,苯乙硫醇自組裝單分子層吸附於金/二氧化鈦表面不同於金在二氧化鈦銳鈦礦相薄膜。

    苯乙硫醇自組裝單分子層吸附愈多,受光激發出電子,電子往外傳遞給O2時生成.O2-與.OH反應,造成亞甲基藍的初始降解反應被阻斷;或是.O2-遷移到與表面電洞復合,藉由被吸附而占據二氧化鈦的活性位置,如:缺陷及氧空位,此將致使.OH的生成量減少或光觸媒效果下降。另外,苯乙硫醇將電子回傳給金時,造成金吸引二氧化鈦電子的趨動力下降,減低捕捉二氧化鈦自由電子的能力,增加電子電洞對復合的機率。經評估後,以苯乙硫醇於3.77 %金之二氧化鈦表面為最佳光觸媒反應系統,比二氧化鈦銳鈦礦相薄膜效率高約18.7 %。

    High transparency TiO2–anatase thin film on glass substrate was prepared by the sol-gel method with the precursor of titanium isopropoxide (TTIP) under low temperature (< 80 ℃). Subsequently, a part of TiO2–anatase thin film was deposited with Au particles. To enhance the photo-catalytic effect, self assembled phenylethyl mercaptan monolayer was chemically adsorbed on the as-prepared partial Au/TiO2 thin film, chosen with three different Au-coverage areas, 3.77, 15.58, and 41.97 %. Au was partially deposited upon TiO2-anatase thin film for the consideration of the exposure of TiO2 surface.

    GIXRD and Raman spectrometer was employed for characterizing the crystalline structure of TiO2, while SEM and AFM for measuring surface morphologies. XPS was utilized for analyzing chemical structures on the as-prepared surfaces, while AES for profiling depths. The photo-catalytic effect was then evaluated by the TiO2-anatase induced degradation of methylene blue. The exposed TiO2 surface area and the quantity of the adsorbed phenylethyl mercaptan were varied with Au coverage rates.

    Photo-catalytic activities of Au/TiO2-anatase thin film were enhanced by the sequence of Au coverage areas: 15.58 % > 41.97 % > 3.77 %. An appropriate coverage of Au upon TiO2-anatase thin film was thus anticipated to reduce the recombination probability of their electron-hole pairs. On the other hand, photo-catalytic activities of the chemisorbed phenylethyl mercaptan/Au/TiO2 were enhanced by the sequence of Au coverage upon TiO2-anatase thin film: 3.77 % > 15.58 % > 41.97 %. It reveals that the photo-catalytic contribution of phenylethyl mercaptan on Au/TiO2 differs from that of Au upon TiO2-anatase thin film.

    As increased the adsorbed quantity of phenylethyl mercaptan monolayer, the UV-excited electrons transferring to O2, forming.O2-, and reacting with.OH, which result in blocking the initial degradation of methylene blue. It is also probable that.O2- species move forward to TiO2 surface and recombine with photo-holes or adsorb on the surface containing TiO2 active sites such as defects and oxygen vacancies. That will lead to decrease the formation of.OH or therefore the photo-catalytic effect. In addition, it is assumable that the electrons returning to Au will cause the degradation of driving force to capture free electrons from TiO2. As a result, the recombination of electron-hole pairs tends to be increased. An optimized photo-catalytic system is thus suggested by the structure of phenylethyl mercaptan/3.77 % Au/TiO2-anatase thin film. Potentially about 18.7 % efficiency is increased as compared with the as-deposited TiO2-anatase thin film.

    摘要............I Abstract........II 致謝............IV 目錄............V 表目錄..........VII 圖目錄..........VII 第一章 序論....1 1.1 前言....1 1.2 研究動機........2 1.3 文獻回顧........3 1.3.1 低溫溶膠凝膠法(sol-gel)製備TiO2穿透性薄膜.......3 1.3.2 以金屬沉積TiO2的光觸媒提升效果..................6 1.3.3 導電性高分子與TiO2以及金屬間的電子傳遞效應......8 1.4 研究目的.........11 第二章 理論基礎..........12 2.1 TiO2光觸媒.......12 2.1.1 Sol-gel法製備TiO2.......12 2.1.2 TiO2光觸媒反應..........13 2.1.3 TiO2光觸媒效應的提升....16 2.1.4 TiO2降解亞甲基藍(methylene blue, MB)機制........17 2.2 薄膜沉積原理............19 2.3 有機半導體傳導機制......20 第三章 實驗方法與設備...........22 3.1 實驗材料與準備..........22 3.1.1 試片準備................22 3.1.2 低溫法製備銳鈦礦相穿透性TiO2薄膜................22 3.1.3 電子束蒸鍍沉積Au於TiO2薄膜表面..................24 3.1.4 自組裝苯乙硫醇單分子層..........................27 3.2 實驗設備........................................27 3.2.1 旋轉塗佈機(spin coater).........................27 3.2.2 CO2雷射雕刻系統(CO2 laser marker system)........27 3.2.3 電子束蒸鍍機(electron beam evaporation, EBE)....28 3.3 TiO2光觸媒薄膜系統實驗流程設計..................29 3.4 分析儀器........................................30 3.4.1 表面粗度儀(alpha step)..........................30 3.4.2 紫外光-可見光分光儀(UV-visible spectroscopy, UV-VIS)............30 3.4.4 低掠角X光繞射儀(grazing incident X-ray diffraction, GIXRD)......31 3.4.5 拉曼散射儀(Raman scattering spectrosmeter)......32 3.4.6 X光光電子能譜儀.................................32 3.4.7 掃瞄式電子顯微鏡................................33 3.4.8 奈米級歐傑電子能譜儀(Auger electron nanoscope, AES).............33 3.4.9 原子力顯微鏡............34 第四章 結果與討論.......35 4.1 TiO2薄膜分析....35 4.1.1 紫外光-可見光光譜儀分析TiO2薄膜穿透率試驗.......35 4.1.2 拉曼散射分析儀分析TiO2薄膜結晶結構......36 4.1.3 低掠角X光繞射分析儀分析TiO2薄膜結晶結構.37 4.2 TiO2薄膜表面鍍Au薄膜表面形貌分析........38 4.2.1 掃描式電子顯微鏡分析鍍Au薄膜的TiO2表面形貌......38 4.2.2 原子力顯微鏡分析鍍Au薄膜的TiO2表面形貌..40 4.2.3 TiO2薄膜表面鍍Au薄膜覆蓋面積計算........40 4.3 TiO2薄膜表面鍍Au圖形分析................41 4.3.1 掃描式電子顯微鏡分析Au矩陣圖形表面形貌..41 4.3.2 能量散射光譜儀分析Au圖形與TiO2薄膜之接著........42 4.4 TiO2薄膜上自組裝苯乙硫醇單分子層之分析..43 4.4.1 TiO2薄膜24 hr酒精浸泡耐受性試驗分析.....43 4.4.2 X光光電子能譜儀分析.....45 4.5 TiO2光觸媒親水性試驗....47 4.6 TiO2光觸媒效能評估......49 4-7 實驗結果討論............52 4.7.1 TiO2薄膜分析討論........52 4.7.2 SAMs/Au/TiO2圖形分佈以及圖形覆蓋面積的影響......52 4.7.3 光觸媒效果的評估........55 4.7.4 Au/ TiO2以及SAMs/Au /TiO2對TiO2光觸媒的增強效果.58 第五章 結論.....61 參考文獻........61

    [1] M. R. Hoffmann, S. T. Martin, W. Choi and D.W. Bahnemann,” Environmental applications of semiconductor photocatalysis”, Chemical review, Vol. 95, 69-96, 1995.

    [2] U. Diebold, “The surface science of titanium dioxide”, Surface Science Reports, Vol. 48, 53-229, 2003.

    [3] C. Y. Wang, R. Pagel, J. K. Dohrmann and D. W. Bahnemann, “Antenna mechanism and deaggregation concept: novel mechanistic principles for photocatalysis”, Comptes Rendus Chemie, Vol. 9, 761-773, 2006.

    [4] A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode”, Nature, Vol. 238, 37-38, 1972.

    [5] I. P. Parkin and R.G. Palgrave, “Self-cleaning coatings”, Journal of Materials Chemistry, Vol. 15, 1689-1695, 2005.

    [6] V.H. Grassian, “Environmental catalysis”, CRC Press, 369, 2005.

    [7] G. Li and K. A. Gray, “The solid–solid interface: explaining the high and unique photocatalytic reactivity of TiO2 -based nanocomposite materials”, Chemical Physics, Vol. 339, 173–187, 2007.

    [8] Y. Hu and C. Yuan, “Low-temperature preparation of photocatalytic TiO2 thin films on polymer substrates by direct deposition from anatase Sol”, Journal of Materials Science and Technology, Vol.22, 239-244, 2006.

    [9] M. A. Fox and M. T. Dulay, “Heterogeneous photocatalysis”, Chemical Reviews, Vol. 93, 341-257, 1993.

    [10] Y. J. Yun, J.S. Chung, S. Kim, S. H. Hahn and E. J. Kim, “Low-temperature coating of sol gel anatase thin film”, Materials Letters, Vol. 58, 3703-3706, 2004.

    [11] K. Nakagawa, F. Wang, Y. Murata and M. Adachi, “Effect of acetylacetone on morphology and crystalline structure fo nanostructured TiO2 in titanium aqueous solution system”, Chemistry Letters, Vol. 34, 736-737, 2005.

    [12] J. H. Yang, Y. S. Han and J. H. Choy, “TiO2 thin-film on polymer substrates and their photocatalytic activity”, Thin Solid Films, Vol. 495, 266-271, 2006.

    [13] J. L. H. Chau, Y. M. Lin, A. K. Li, W. F. Su, K. S. Chang, S. L. C. Hsu and T. L. Li, "Transparent high refractive index nanocomposite thin films", Materials Letters, Vol. 61, 2908-2910, 2007.

    [14] Y. T. Kim, Y. S. Park, H. Myung and H. K. Chae, ”A chelate-assisted route to anatase TiO2 nanoparticles in acidic aqueous media”, Colloids and Surfaces A,Vol. 313-314, 260-263, 2008.

    [15] O. Carp, C.L. Huisman and A. Reller, “Photoinduced reactivity of titanium dioxide”, Solid State Chemistry, Vol. 32, 33-177, 2004.

    [16] M. Sadeghi, W. Liu, T.G. Zhong, P. Stavropoulos and B. Levy, “Role of photoinduced charge carrier separation distance in heterogeneous photocatalysis: oxidative degradation of CH3OH vapor in contact with Pt / TiO2 and cofumed TiO2-Fe2O3”, The Journal of Physical Chemistry, Vol. 100, 19466–19474, 1996.

    [17] E. Wahlstrom, R. Schaub, C. Africh, A. Ronnau and F. Besenbacher, “Bonding of gold nano-clusters to oxygen vacancies on rutile TiO2(110)”, Physical Review Letters, Vol. 90, 026101.1-026101.4, 2003.

    [18] A. Linsebigler, C. Rusu and J. T. Yates, “Absence of platinum enhancement of a photoreaction on TiO2-CO photooxidation on Pt/TiO2(110)”, Journal of the American Chemical Society, Vol. 118, 5284-5289, 1996.

    [19] H. Gerischer and Adam Heller, “The role of oxygen in photooxidation of organic molecules on semiconductor particles”, The Journal of Physical Chemistry, Vol. 95, 5261-5266, 1991.

    [20] S. Sakthivel, M.V. Shankar, M. Palanichamy, Banumathi Arabindoo, D.W. Bahnemann and V. Murugesan, “Enhancement of photocatalytic activity by metal deposition: characterisation and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst”, Water Research, Vol. 38, 3001-3008, 2004.

    [21] V. Subramanian, E. E. Wolf and P. V. Kamat,” Catalysis with TiO2/gold nanocomposites effect of metal particle size on the fermi level equilibration”, Journal of the American Chemical Society, Vol. 126, 4943-4950, 2004.

    [22] X. P. Wang, Y. Yu, X. F. Hu and L. Gao, “Hydrophilicity of TiO2 films prepared by liquid phase deposition”, Thin Solid Films, Vol. 371, 148-152, 2000.

    [23] J. M. Jung, M. Wang, E. J. Kim and S. H. Hahn, “Photocatalytic properties of Au/TiO2 thin films prepared by RF magnetron co-sputtering”, Vacuum, Vol. 82, 827–832, 2008.

    [24] J. M. Jung, M. Wang, E. J. Kim, C. Park and S. H. Hahn,” Enhanced photocatalytic activity of Au-buffered TiO2 thin films prepared by radio frequency magnetron sputtering”, Applied Catalysis B: Environmental, Vol. 84, 389-392, 2008.

    [25] A. Ulman, “An introduction to ultrathin organic films from langmuir–blodgett to self-assembly”, Academic press, 1991.

    [26] R. Senadeera, N. Fukuri, Y. Saito, T. Kitamura, Y. Wada and S. Yanagida, “Volatile solvent-free solid-state polymer-sensitized TiO2 solar cells with poly(3,4-ethylenedioxythiophene) as a hole-transporting medium”, Chemical Communications, Vol. 17, 2259–2261, 2005.

    [27] G. K. R. Senadeera, T. Kitamura, Y. Wada and S. Yanagida,”Photosensitization of nanocrystalline TiO2 films by a polymer with two carboxylic groups, poly(3-thiophenemalonic acid)”, Solar Energy Materials and Solar Cells, Vol. 88, 315–322, 2005.

    [28] Y. Gu, K. Kumar, A. Lin, I. Read, M.B. Zimmt and D.H. Waldeck, “Studies into the character of electronic coupling in electron transfer reactions”, Journal of Photochemistry and Photobiology A : Chemistry, Vol. 105, 189-196, 1997.

    [29] A. R. Noble-Luginbuhl and R. G. Nuzzo, “Assembly and characterization of SAMs formed by the adsorption of alkanethiols on zinc selenide substrates”, Langmuir, Vol. 17, 3937-3944, 2001.

    [30] M. J. Hostetler, A. C. Templeton and R.W. Murray, “Dynamics of place-exchange reactions on monolayer-protected gold cluster molecules”, Langmuir, Vol. 15, 3782-3789, 1999.

    [31] J. Li, L. Zhu, Y. Wu, Y. Harima, A. Zhang and H. Tang, “Hybrid composites of conductive polyaniline and nanocrystalline titanium oxide prepared via self-assembling and graft polymerization”, Polymer, Vol. 47, 7361-7367, 2006.

    [32] G. K. R. Senadeera, T. Kitamura, Y. Wadab and S. Yanagida, “Enhanced photoresponses of polypyrrole on surface modified TiO2 with self-assembled monolayers”, Journal of Photochemistry and Photobiology A: Chemistry, Vol. 184, 234–239, 2006.

    [33] T. Kondo and K. Uosaki, “Self-assembled monolayers (SAMs) with photo-functionalities”, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, Vol. 8, 1–17, 2007.

    [34] A. Kathiravan, M. Chandramohan, R. Renganathan and S. Sekar, “Photoinduced electron transfer from phycoerythrin to colloidal metal semiconductor nanoparticles”, Spectrochimica Acta Part A, Vol. 72, 496-501, 2009.

    [35] J. Livage, M. Henry and C. Sanchez, “Sol-gel chemistry of transition metal oxides”, Journal of Solid State Chemistry, Vol.18, 259-341, 1988.

    [36] H. Shin, H. S. Jung, K. S. Hong and J. K. Lee, “Crystallization process of TiO2 nanoparticles in an acidic solution”, Chemistry Letters, Vol. 33, 1382-1383, 2004.

    [37] N. Phonthammachai, T. Chairassameewong, E. Gulari, A. M. Jamieson and S. Wongkasemjit, “Structural and rheological aspect of mesoporous nanocrystalline TiO2 synthesized via sol-gel process”, Microporous and Mesoporous Materials, Vol. 66, 261-271, 2003.

    [38] S. Mahshid, M. Askari and M. Sasani Ghamsari, “Synthesis of TiO2 nanoparticles by hydrolysis and peptization of titanium isopropoxide solution”, Journal of Materials Processing Technology, Vol. 189, 296-300, 2007.

    [39] X. Z. Ding, Z.Z. Qi and Y. Z. He, “Effect of hydrolysis water on the preparation of nano-crystalline titania powders via a sol-gel process”, Journal of Materials Science Letters, Vol. 14, 21-22, 1995.

    [40] D. Vorkapic and T. Matsoukas, “Effect of temperature and alcohols in the preparation of titanium from alkoxides”, The American Ceramic Society, Vol. 81, 2815-2820, 1998.

    [41] R. J. Errington, J. Ridland, W. Clegg, R. A. Coxall and J. M. Sherwood, “β-diketonate derivatives of titanium alkoxides:X-ray crystal structures and solution dynamics of the binuclear complexes[{Ti(OR)3(dik)}2]”, Polyhedron, Vol. 17, 659-674, 1998.

    [42] C. J Brinker and G. W. Scherer, “Sol-gel science: The physics and chemistry of sol-gel processing”, Academic press, 52-59 , 1990

    [43] D. Banerjea and Z. Anorg,” Kinetics and mechanism of dissociation of metal chelates. V. Dissociation of tris-acetylacetonato-chromium(III). With 4 figures”, Allgemeine Chemie, Vol. 359, 305-312, 1968.

    [44] K. Ishibashi, Y. Nosaka, K. Hashimoto and A. Fujishima, “Time-dependent behavior of active oxygen species formed on photoirradiated TiO2 films in air”, The Journal of Physical Chemistry B, Vol. 102, 2117-2120, 1998.

    [45] A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillard and J. M. Herrmann,” Photocatalytic degradation pathway of methylene blue in water”, Applied Catalysis B: Environmental, Vol. 31, 145-157, 2001.

    [46] J. D. Liao, H. J. Chen, C. W. Chang, S. M. Chiu and Z. S. Chen, “Thin-film photo-catalytic TiO2 phase prepared by magnetron sputtering deposition, plasma ion implantation and metal vapor vacuum arc source”, Thin Solid Films, Vol. 515, 176 -185, 2006.

    [47] R. Yamada, H. Wano and K. Uosaki, “Effect of temperature on structure of the self-assembled monolayer of decanethiol on Au(111) surface”, Langmuir, Vol. 16, 5523, 2000

    [48] M. Ohring, “Materials science of thin films-deposition and structure”, Academic press, 357-360, 2002.

    [49] 林士廷,「有機發光二極體光源之偏極化研究」,國立成功大學光電科學與工程研究所,2004。

    [50] G. Brocks and A. Tol, “Small band gap semiconducting polymers made from dye molecules: polysquaraines”, The Journal of Physical Chemistry, Vol. 100, 1838-1846, 1996

    [51] 林育全、黃富駿、陳信宏、張文耀、蘇中源,「CO2雷射雕刻機」,國科會南區微系統微研究中心,1-27,2004。

    [52] 汪建民主編,「材料分析」,中國材料科學學會,73-82,1998。

    下載圖示 校內:2012-07-22公開
    校外:2012-07-22公開
    QR CODE