簡易檢索 / 詳目顯示

研究生: 林筠軒
Lin, Yun-Shaun
論文名稱: 智能行動外骨骼輔具之馬達能量回收系統
Motor Energy Regeneration for Intelligent Mobility Exoskeleton Assistive Devices
指導教授: 戴政祺
Tai, Cheng-Chi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 101
中文關鍵詞: 能源回收行動輔具脈寬調變控制
外文關鍵詞: Energy Recovery, Mobility Aids, Pulse Width Modulation Control
相關次數: 點閱:10下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著高齡化社會的發展,市面上的外骨骼產品越來越多元,其中助力型外骨骼不僅可以減少勞動負擔,也可以避免勞動損傷的情況發生,醫療型外骨骼可以提供傷患便利的復健過程。另一方面,此類型的外骨骼裝置,在發生步態切換時,外骨骼無法達到即時的控制模式切換,容易造成不舒適的頓挫感。在此背景下,本文提出一套能源回收的架構,針對行走減速的判定,採用閉迴路控制,準確切換儲能系統的開關。在本文的系統架構中,感測器訊號由樹梅派接收,分別收取做為控制,透過事先的分析判斷,分析馬達在減速下電壓變化的情形。在系統驗證方面,針對減速的步態,個別收取一定筆數之電壓資料,並在分析過後對於控制開關的係數調整,最終觀測能量儲存的結果。實驗結果證明了本論文開發之系統在實務上的適用性,對於馬達運轉的能源回收具有良好的參考價值。

    As societies age, the market for exoskeletons is expanding and diversifying. Power-assist exoskeletons not only reduce physical workload but also help prevent work-related injuries, while medical exoskeletons facilitate more efficient and convenient rehabilitation for patients. To extend the operational time of exoskeleton systems, this study focuses on energy recovery and storage during gait transitions, utilizing deceleration phases to harvest regenerative energy. A feedback control framework is proposed to dynamically regulate power flow based on walking behavior. The system architecture employs a Raspberry Pi to acquire and process sensor signals in real time, and motor voltage fluctuations during deceleration are analyzed to inform control decisions. For validation, voltage data were recorded under various walking conditions, and control parameters were adjusted accordingly. The observed energy storage outcomes confirm the system’s practicality and provide insights into motor-based energy recovery, while the experimental findings validate the effectiveness of the proposed method in real-world conditions.

    摘 要 I Extended Abstract II 致謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 第一章 緒論 1 1-1 研究背景 1 1-2 國內外文獻回顧 2 1-3 研究動機與目的 5 1-4 論文架構 6 第二章 理論背景與相關技術 7 2-1 鋰電池特性與 BMS 原理 7 2-2 馬達回充與儲能技術 8 2-3 相關文獻比較與系統差異分析 9 2-3-1 馬達回充控制設計 9 2-3-2 能量流設計 10 2-3-3 儲能電路與控制模組設計 10 2-3-4 人體動作模擬與驗證 11 2-3-5 整合系統應用 11 2-4 輔助電池技術 13 2-5 感測器技術規格 14 2-5-1 ADS1256 類比數位轉換器模組 15 2-5-2 24V 1路繼電器高/低電平驅動板 16 2-5-3 DC-DC 高效率可調式降壓模組 17 2-5-4 TP4056 鋰電池充電模組 18 2-5-5 AK80-9 BLDC motor 19 2-5-6 18650 電池 20 2-5-7 足底壓力感測鞋墊 21 2-6 系統核心 22 2-7 人體下肢外骨骼機構設計架構 23 2-8 電路系統架構 27 第三章 硬體設計與研究方法 29 3-1前言 29 3-2 能源回收實驗架構與測試條件 29 3-2-1 實驗架構介紹 29 3-2-2 實驗流程 32 3-2-3 馬達回充電壓波形驗證 33 3-2-4 實驗設計與分組說明 34 3-2-5 馬達驅動設計與步態模擬策略 36 3-3 資料擷取與分析方法 37 3-3-1 感測設計 38 3-3-2 資料擷取流程 39 3-3-3程式架構與多執行緒資料擷取 39 第四章 實驗結果與分析 42 4-1 馬達回充電壓量測結果 42 4-1-1 實驗設計與控制方式說明 42 4-1-2 控制減速與回充現象觀察 43 4-2 電池端回充電壓與能量分析 48 4-2-1 電池端量測設計 48 4-2-2 電池端動態回充結果分析 51 4-3 實驗結果與分析 53 4-3-1 能量傳遞整合與觀察 54 4-3-2 回充能量之穩定性與變異性分析 54 4-3-3 控制邏輯影響下之回充效率 59 4-3-4 回充電壓變化與能量估測 61 4-4 結果討論 64 4-4-1 回收能量之量測比較 65 4-4-2 控制模組介入效益 65 4-4-3 與文獻成果之整體比較與驗證 65 第五章 結論與未來展望 67 5-1 結論 67 5-2 未來展望 68 參考文獻 71

    [1] W. van Dijk and H. Van der Kooij, "XPED2: A Passive Exoskeleton with Artificial Tendons," IEEE Robotics & Automation Magazine, vol. 21, no. 4, pp. 56–61, Dec. 2014, doi: 10.1109/MRA.2014.2360309.
    [2] A. M. Oymagil, J. K. Hitt, T. Sugar and J. Fleeger, "Control of a Regenerative Braking Powered Ankle Foot Orthosis," 2007 IEEE 10th Int. Conf. on Rehabilitation Robotics, Noordwijk, Netherlands, 2007, pp. 28–34, doi: 10.1109/ICORR.2007.4428402.
    [3] B. Laschowski, R. S. Razavian and J. McPhee, "Simulation of Stand-to-Sit Biomechanics for Robotic Exoskeletons and Prostheses With Energy Regeneration," IEEE Trans. Med. Robot. Bionics, vol. 3, no. 2, pp. 455–462, May 2021, doi: 10.1109/TMRB.2021.3058323.
    [4] F. Liu et al., "Design of Regeneration Energy Recovery Controller for Active Multi-axis Lower Limb Exoskeleton," 2023 IEEE Int. Conf. on Real-time Computing and Robotics (RCAR), Datong, China, 2023, pp. 527–531, doi: 10.1109/RCAR58764.2023.10249800.
    [5] A. J. Young and D. P. Ferris, "State of the Art and Future Directions for Lower Limb Robotic Exoskeletons," IEEE Trans. Neural Syst. Rehabil. Eng., vol. 25, no. 2, pp. 171–182, Feb. 2017, doi: 10.1109/TNSRE.2016.2521160.
    [6] A. J. Godfrey and V. Sankaranarayanan, "A New Electric Braking System with Energy Regeneration for a BLDC Motor Driven Electric Vehicle," Eng. Sci. Technol. Int. J., vol. 21, no. 4, pp. 704–713, 2018, ISSN 2215-0986.
    [7] B. Laschowski et al., "Simulation of Energy Regeneration in Human Locomotion for Efficient Exoskeleton Actuation," 2022 9th IEEE RAS/EMBS Int. Conf. for Biomedical Robotics and Biomechatronics (BioRob), Seoul, Korea, 2022, pp. 01–08, doi: 10.1109/BioRob52689.2022.9925349.
    [8] D. Carreira, G. D. Marques and D. M. Sousa, "Hybrid Energy Storage System Joining Batteries and Supercapacitors," 2014 IEEE 5th Int. Symp. on Power Electronics for Distributed Generation Systems (PEDG), Galway, Ireland, 2014, pp. 1–6, doi: 10.1109/PEDG.2014.6878712.
    [9] D. Andrea, Battery Management Systems for Large Lithium Ion Battery Packs, Artech House, 2010.
    [10] M. Chen and G. A. Rincon-Mora, "Accurate Electrical Battery Model Capable of Predicting Runtime and I–V Performance," IEEE Trans. Energy Convers., vol. 21, no. 2, pp. 504–511, Jun. 2006.
    [11] J. Partridge and D. I. Abouelamaimen, "The Role of Supercapacitors in Regenerative Braking Systems," Energies, vol. 12, no. 14, p. 2683, 2019.
    [12] S. Khaligh and A. Li, "Battery, Ultracapacitor, Fuel Cell, and Hybrid Energy Storage Systems for Electric, Hybrid Electric, Fuel Cell, and Plug-in Hybrid Electric Vehicles: State of the Art," IEEE Trans. Veh. Technol., vol. 59, no. 6, pp. 2806–2814, Jul. 2010, doi: 10.1109/TVT.2010.2047877.
    [13] A. R. M. F. Hoque, A. A. Khan, and M. A. H. Chowdhury, "A Study on an Energy-Regenerative Braking Model Using Supercapacitors and DC Motors," World Electric Vehicle Journal, vol. 15, no. 7, p. 326, Jul. 2024.
    [14] Y. Wang, C. Wang and Y. Zhang, "Energy-Regenerative Braking Control of Electric Vehicles Using Three-Phase Brushless Direct-Current Motors," Energies, vol. 7, no. 1, pp. 99–114, Jan. 2014.
    [15] S. Geraee et al., "A Modified DTC with Capability of Regenerative Braking Energy in BLDC Driven Electric Vehicles Using Adaptive Control Theory," arXiv preprint, arXiv:1710.01873, Oct. 2017.
    [16] L. Mišković et al., "The JSI-KneExo: Active, Quasi-Passive, Pneumatic, Portable Knee Exo with Bidirectional Energy Flow for Air Recovery in Sit-Stand Tasks," arXiv preprint, arXiv:2306.16000, Jun. 2023.
    [17] K.-T. Yoon and Y.-M. Choi, "Biomechanical Regenerative Braking Energy Harvester: A Systematic Analysis," Int. J. Precis. Eng. Manuf.-Green Technol., vol. 10, no. 2, pp. 437–456, Sep. 2022.
    [18] R. Palanisamy et al., "A New Energy Regeneration System for a BLDC Motor Driven Electric Vehicle," Int. J. Electr. Comput. Eng. (IJECE), vol. 11, no. 4, pp. 2986–2993, Aug. 2021.
    [19] A. K. Błachowicz and M. W. Kaczmarek, "Simulation Studies of Energy Recovery in a BLDC Motor-Based Kinetic Energy Storage," Energies, vol. 15, no. 20, p. 7494, Oct. 2022.
    [20] M. Pathak and R. Kumar, "Synchronous Pre-biasing of Triboelectric Nanogenerator for Enhanced Energy Extraction," arXiv preprint, arXiv:2105.10856, May 2021.
    [21] S. H. Lee, J. H. Kim and H. J. Kim, "Simulation of Energy Regeneration in Human Locomotion for Efficient Exoskeleton Actuation," 2022 9th IEEE RAS/EMBS Int. Conf. for Biomedical Robotics and Biomechatronics (BioRob), Seoul, Korea, Aug. 2022, pp. 861–866.
    [22] A. S. M. S. Uddin, M. A. Rahman and M. R. Islam, "Harnessing Biomechanical Energy Using Shoulder Exoskeleton: Electrical Energy Regeneration," IEEE Trans. Ind. Electron., vol. 67, no. 1, pp. 123–132, Jan. 2020.
    [23] G. Shi, G. Li, M. Yang and Y. Zhang, "Kinetic Walking Energy Harvester Design for a Wearable Bowden Cable-Actuated Exoskeleton Robot," Micromachines, vol. 13, no. 4, p. 571, 2022.
    [24] K.-M. Kang et al., "The Operation Method of Hybrid Power Supply System Combining Lithium Polymer Battery and Supercapacitor for Industrial Drones," Energies, vol. 16, no. 6, p. 2640, 2023.
    [25] H. Liu, Z. Tang, L. Wang and Y. Wang, "Harvesting the Negative Work of an Active Exoskeleton Robot to Extend Its Operating Duration," Mech. Syst. Signal Process., vol. 151, p. 107425, 2021.
    [26] Y. Wang, X. Zhang and M. Li, "The Role of Supercapacitors in Regenerative Braking Systems," Proc. IEEE Int. Conf. on Sustainable Energy Technologies, Singapore, 2018, pp. 154–159.
    [27] W. He, Z. Zhou and T. Gu, "Capacitor Based Activity Sensing for Kinetic-Powered Wearable IoTs," Proc. 17th Conf. on Embedded Networked Sensor Systems (SenSys), New York, NY, USA: ACM, 2019, pp. 123–136, doi: 10.1145/3356250.3360025.
    [28] K. Kong and A. M. Dollar, "Analysis of Mechanical and Electrical Power Generation in a Lower Limb Exoskeleton," Proc. 2011 IEEE Int. Conf. on Robotics and Automation (ICRA), 2011, pp. 5293–5300.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE