簡易檢索 / 詳目顯示

研究生: 張維哲
Chang, Wei-Che
論文名稱: 磁控射頻濺鍍過渡金屬氧化物薄膜以及後續的相結構退火控制和應用研究
RF Magnetron Sputtering and Post-deposition Annealing Control of Phase and Structure of Transition-metal Oxide Films for Various Applications
指導教授: 齊孝定
Qi, Xiao-Ding
共同指導教授: 李世欽
Lee, Shin-Chin
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 139
中文關鍵詞: 二氧化錫氧化鉬氣體感測透明導電膜
外文關鍵詞: SnO2, MoO3, gas sensor, transparent conductive oxide
相關次數: 點閱:81下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 過渡金屬薄膜材料因為具有半導體性質以及觸媒特性,常作為氣體感測性質研究之主要材料。本研究使用雙靶式反應性射頻磁控濺鍍法備製(1)SnO2:Mo, (2)MoO3, (3)ITO:Cr 等薄膜,去探討其結構以及性質,討論其氣體感測或透明導電的特性。
    (1)SnO2:Mo
    SnO2:Mo之摻雜量為利用Mo靶濺鍍之功率大小加以控制,濺鍍於矽基板與玻璃基板,並觀察退火製程溫度、操作溫度、待測氣體之氣體感測特性。研究結果顯示,最佳退火溫度為500 oC持溫四小時,增加操作溫度有助於氣體感測效果的提昇,純SnO2最佳操作溫度為450℃,對酒精氣體感測性質可達14.77,而摻雜Mo最佳的含量為7.3 at%,分別在400與300 oC分別獲得16.47與7.79酒精氣體敏感性質,並且能降低操作溫度,而對於鹼性氣體而言,SnO2:Mo薄膜更具備選擇性,對100 ppm乙醇氣氛感測性質最佳之條件為SnO2:Mo靶濺鍍功率為7.3 at%,敏感度最大值出現在操作溫度400℃時,對酒精氣體感測性質可達16.47,並且可降低操作溫度,二氧化錫摻雜7.3atom%鉬的SnO2薄膜,氣體感測敏感度在較低溫度可達7.97,相較於無摻雜的氧化錫之2.92,純氧化錫薄膜氣體感測器對其他還原性氣氛之氣體感測性質相似,選擇性不佳,而就結果顯示SnO2:Mo氣體感測薄膜具備對氨氣氣氛之選擇性,對其他鹼性氣體也具備較高的響應。
    (2) MoO3
    此實驗提供一個簡易的退火方式,在矽基板上利用不同退火溫度備製出MoO3薄膜,在350 oC以下呈現β相,450 oC以上呈現α相。α相在不同工作壓力下濺鍍並退火450 oC之薄膜具備不一樣的織構,在較低的溫度下,β相也呈現(200)平行基板織構,退火之MoO3織構均與單晶矽基板晶格排列有一定的相關性,並且利用不同相與織構來探討100 ppm氨氣氣體敏感性質。
    (3) ITO:Cr
    此實驗利用ITO與鉻靶共濺鍍的方式,在常溫下備製ITO摻雜不同鉻含量之薄膜,由於鉻離子穩定價態為6價,取代銦離子,能產生多餘的電子到導帶,實驗結果顯示,適量的鉻添加能有效增加載子濃度,進而增加電性,常溫下最佳的摻雜量為1.2 at%鉻,而利用雙靶材的濺鍍除了改善電性以外,還發現能有效降低表面粗糙度與增加結晶性,並且觀察到隨著鉻摻雜有紅移的現象。

    In addition to the good catalytic properties, a large number of transition-metal (TM) oxides are semiconducting at room temperature or after being heated up to an elevated temperature. Therefore, they are widely studied as the sensor materials. Also, by proper doing the conductivity of some TM oxides may become good enough to be used as a transparent conductor. In this thesis, three pure or doped TM oxide films were investigated for these kinds of applications. They were: (1) SnO2/SnO2:Mo, (2) MoO3, and (3) ITO:Cr. All the films were deposited by the RF magnetron sputtering, and then followed by annealing in air at various temperatures to obtain the desired structural and physical properties. The main findings are summarized as follows.

    (1) SnO2:Mo
    Pure and Mo-doped SnO2 films were deposited on the glass substrates by sputtering from the metallic Sn and Mo targets with subsequent annealing in air at 500-700 °C. The optimum annealing temperature was 500 oC. Pure and the doped films annealed at this temperature showed best sensitivities for both alcohol and amine gases. While there was no distinct difference between the pure and the Mo-doped films for the alcohol gases at the operating temperature of 400 oC, the latter showed clearly improved sensitivities at lower temperature (300 oC), e.g. the ethanol sensitivity of SnO2:Mo was measured to be 16.47 and 7.97 at 400 oC and 300 oC, respectively, compared to 14.77 and 2.92 for the pure SnO2. On the other hand, the SnO2:Mo films responded much more sensitively to the amine gases than pure SnO2 films. With the optimum Mo content of 7.3 at%, the doped films showed the sensitivity as high as 29.49 for hydrazine.

    (2) MoO3
    Thin films were sputtered on Si substrates from a metallic Mo target at room temperature and then annealed in air at the temperatures between 200-550 °C to form MoO3 of various phases and textures. The films annealed at 450 °C for 1 hr showed a pure α phase and their texture was dependent on the ambient pressure during the initial sputtering deposition. The films sputtered under 3 mTorr were b-axis oriented with a broad in–plane alignment after annealing, while the films sputtered under higher pressures showed a texture with the Mo-O6 double-layers upright to the substrate. The films annealed between 350-400 °C were composed of both α and β phases. Below 350 °C, nearly a pure β phase was obtained, which showed a preferred a-axis orientation if the annealing temperature was in the range of 300-350 °C. Ammonia gas sensing properties were tested for the films. The β phase showed best sensitivity, while the α phase with the planar texture showed shortest recovery time. MoO3 films have wide-ranging applications, each of which prefers a specific phase and texture. This simple but productive method is therefore of practical importance.

    (3) ITO:Cr
    Cr doped indium–tin-oxide (ITO) films were co-sputtered on the Corning 1737 glass under various sputtering powers. Experimental results showed that the surface roughness decreased slightly by the increase of Cr sputtering rate. Pure ITO films deposited at room temperature were amorphous-like. ITO:Cr films showed a better crystallinity and a smoother surface. The optimum Cr doping content was 1.2 at%. The carrier concentration of the ITO:Cr films increased with Cr. However, the mobility of the carrier decreased due to a direct scattering. In addition, a red shift with the increase of carrier concentration was observed in the UV-Vis absorption spectra.

    摘要 I Abstract III 致謝 VI 圖目錄 XI 表目錄 XVI 第一章 緒論 1 1.1 前言 1 1.2 研究目的與動機 4 第二章 文獻回顧 6 2.1濺鍍原理 6 2.2薄膜成核、成長理論 8 2.3 氣體感測器介紹 14 2.3.1 電化學型[76] 14 2.3.2 固態電解質型[1] 14 2.3.3 觸媒燃燒型[83] 14 2.3.4 紅外線型[84] 15 2.3.5 金屬氧化物半導體型[85] 15 2.4氣體偵測器工作原理 17 2.4.1 蕭特基介面 17 2.4.2 氣體之吸附機制 17 2.5 串接微晶理論 23 2.6 氣體感測器的改良 26 2.6.1 內部摻雜 26 2.6.2 外部摻雜 27 2.7 二氧化錫 29 2.7.1 二氧化錫結構 29 2.7.2 二氧化錫之特性與運用 32 2.8三氧化鉬 33 2.8.1 三氧化鉬結構 33 2.8.2 三氧化鉬之特性與備製 35 2.9氧化銦錫(ITO)透明導電膜 37 2.9.1 氧化銦錫(ITO)結構 37 2.9.2 氧化銦錫(ITO)透明導電膜電學性質 39 2.9.3 氧化銦錫(ITO)透明導電膜光學性質 41 2.10 酸鹼定義與共軛酸鹼對 45 2.10.1 阿瑞尼士(Arrhenius)酸鹼學說 45 2.10.2 布忍斯特(Brønsted)之質子轉移學說 45 2.10.3路易士電子轉移 46 第三章 實驗方法與步驟 47 3.1 實驗流程 47 3.2 實驗材料 48 3.3 薄膜備製 50 3.3.1 濺鍍系統 50 3.3.2 試片前處理 51 3.3.3 濺鍍參數設置 51 3.3.4 退火處理 52 3.4 薄膜性質量測 55 3.4.1 膜厚與沉積速率量測 55 3.4.2 晶體結構分析 55 3.4.3 表面形貌分析與粗糙度分析 55 3.4.4 成分及化學鍵結分析 56 3.5 氣體偵測性質分析 57 3.5.1 氣體偵測系統 57 3.5.2 氣體偵測試片備製 57 3.5.3 氣體偵測能力分析流程 57 3.6 霍爾電性量測 60 3.7 透光性質量測 60 第四章 結果與討論 61 4.1 濺鍍SnO2/SnO2:Mo薄膜及氣體感測器性質 61 4.1.1 XPS光譜分析 61 4.1.2 SnO2/SMO薄膜結構分析 64 4.1.3 SnO2/SMO 表面形貌分析 72 4.1.4 SnO2/SMO 氣體感測分析 74 4.1.5 濺鍍SnO2:Mo薄膜對還原性氣體選擇性測試 80 小結 84 4.2 MoO3薄膜及氣體感測特性 85 4.2.1 XPS光譜分析 85 4.2.2 MoO3薄膜結構分析 86 4.2.3初鍍表面形貌分析 93 4.2.4 MoO3 氣體感測分析 100 小結 104 4.3 ITO-Cr透明導電特性與運用 105 4.3.1 ITO-Cr成分與薄膜結構分析 105 4.3.2 ITO-Cr表面形貌 107 4.3.3 ITO-Cr光學與導電性質分析 110 小結 113 第五章 結 論 114 未來工作 115 附錄(自述) 116 附錄(著作) 117 參考文獻 119

    [1] G. Sberveglieri: Gas sensors: Principle, operation and developments, Kluwer Academic Publishers, Netherlands, 1992.
    [2] J. W. Gardner, H. V. Shurmer, T. T. Tan, "Application of an electronic nose to the discrimination of coffees", Sensors and Actuators B: Chemical, 6 (1992) 71-75.
    [3] A. Taurino, S. Capone, C. Distante, M. Epifani, R. Rella, P. Siciliano, "Recognition of olive oils by means of an integrated sol-gel SnO2 Electronic Nose", Thin Solid Films, 418 (2002) 59-65.
    [4] J. D. Choi, G. M. Choi, "Electrical and CO gas sensing properties of layered ZnO-CuO sensor", Sensors and Actuators B: Chemical, 69 (2000) 120-126.
    [5] K. Zakrzewska, "Gas sensing mechanism of TiO2-based thin films", Vacuum, 74 (2004) 335-338.
    [6] A. D. Brailsford, M. Yussouff, E. M. Logothetis, T. Wang, R. E. Soltis, "Experimental and theoretical study of the response of ZrO2 oxygen sensors to simple one-reducing-gas mixtures", Sensors and Actuators B: Chemical, 42 (1997) 15-26.
    [7] V. Srivastava, K. Jain, "Highly sensitive NH3 sensor using Pt catalyzed silica coating over WO3 thick films", Sensors and Actuators B: Chemical, 133 (2008) 46-52.
    [8] P. Bogdanov, M. Ivanovskaya, E. Comini, G. Faglia, G. Sberveglieri, "Effect of nickel ions on sensitivity of In2O3 thin film sensors to NO2", Sensors and Actuators B: Chemical, 57 (1999) 153-158.
    [9] M. B. Rahmani, S. H. Keshmiri, J. Yu, A. Z. Sadek, L. Al-Mashat, A. Moafi, K. Latham, Y. X. Li, W. Wlodarski, K. Kalantar-zadeh, "Gas sensing properties of thermally evaporated lamellar MoO3", Sensors and Actuators B: Chemical, 145 (2010) 13-19.
    [10] S. S. Sunu, E. Prabhu, V. Jayaraman, K. I. Gnanasekar, T. K. Seshagiri, T. Gnanasekaran, "Electrical conductivity and gas sensing properties of MoO3", Sensors and Actuators B: Chemical, 101 (2004) 161-174.
    [11] S. Wang, Z. Wang, X. Liu, L. Zhang, "DC and AC response of SnO2 sensor to CO", Sensors and Actuators B: Chemical, 131 (2008) 318-322.
    [12] B.-K. Min, S.-D. Choi, "C4H10 sensing characteristics of ion beam sputtered SnO2 sensors", Sensors and Actuators B: Chemical, 108 (2005) 125-129.
    [13] B.-Y. Wei, M.-C. Hsu, P.-G. Su, H.-M. Lin, R.-J. Wu, H.-J. Lai, "A novel SnO2 gas sensor doped with carbon nanotubes operating at room temperature", Sensors and Actuators B: Chemical, 101 (2004) 81-89.
    [14] A. Ryzhikov, M. Labeau, A. Gaskov, "Al2O3(M = Pt, Ru) catalytic membranes for selective semiconductor gas sensors", Sensors and Actuators B: Chemical, 109 (2005) 91-96.
    [15] D. Schönauer, K. Wiesner, M. Fleischer, R. Moos, "Selective mixed potential ammonia exhaust gas sensor", Sensors and Actuators B: Chemical, 140 (2009) 585-590.
    [16] D. Yang, H.-H. Lu, B. Chen, C.-W. Lin, "Surface Plasmon Resonance of SnO2/Au Bi-layer Films for Gas Sensing Applications", Sensors and Actuators B: Chemical, 145 (2010) 832-838.
    [17] M. Batzill, U. Diebold, "The surface and materials science of tin oxide", Progress in Surface Science, 79 (2005) 47-154.
    [18] L. Casagrande, L. Lietti, I. Nova, P. Forzatti, A. Baiker, "SCR of NO by NH3 over TiO2-supported V2O5-MoO3 catalysts: reactivity and redox behavior", Applied Catalysis B: Environmental, 22 (1999) 63-77.
    [19] Y. Hu, X. Diao, C. Wang, W. Hao, T. Wang, "Effects of heat treatment on properties of ITO films prepared by rf magnetron sputtering", Vacuum, 75 (2004) 183-188.
    [20] D. J. Seo, S. H. Park, "Structural, electrical and optical properties of In2O3:Mo films deposited by spray pyrolysis", Physica B: Condensed Matter, 357 (2005) 420-427.
    [21] S. Parthiban, E. Elangovan, K. Ramamurthi, R. Martins, E. Fortunato, "Investigations on high visible to near infrared transparent and high mobility Mo doped In2O3 thin films prepared by spray pyrolysis technique", Solar Energy Materials and Solar Cells, 94 (2010) 406-412.
    [22] B. Zhang, X. Dong, X. Xu, J. Wu, "Preparation and characterization of tantalum-doped indium tin oxide films deposited by magnetron sputtering", Scripta Materialia, 58 (2008) 203-206.
    [23] Y.-C. Liang, "Surface morphology and conductivity of zirconium-doped nanostructured indium oxide films with various crystallographic features", Ceramics International, 36 (2010) 1743-1747.
    [24] Y.-C. Liang, C.-C. Liu, C.-C. Kuo, Y.-C. Liang, "Structural and opto-electronic properties of transparent conducting (2 2 2)-textured Zr-doped In2O3/ZnO bilayer films", Journal of Crystal Growth, 310 (2008) 3741-3745.
    [25] M. Yang, J. Feng, G. Li, Q. Zhang, "Tungsten-doped In2O3 transparent conductive films with high transmittance in near-infrared region", Journal of Crystal Growth, 310 (2008) 3474-3477.
    [26] N. Sankarasubramanian, K. Santhakumari, V. S. Vidhya, L. C. Nehru, B. Subramanian, A. Thayumanavan, S. Ramamurthy, C. Sanjeeviraja, M. Jayachandran, "Optoelectronic properties of nanocrystalline F-doped SnO2 (FTO) films prepared by sol-gel spin coating technique", Optoelectronics and Advanced Materials-Rapid Communications, 1 (2007) 417-424.
    [27] S. Mishra, C. Ghanshyam, N. Ram, S. Singh, R. P. Bajpai, R. K. Bedi, "Alcohol sensing of tin oxide thin film prepared by sol-gel process", Bulletin of Materials Science, 25 (2002) 231-234.
    [28] S.-M. Chou, M.-H. Hon, I.-C. Leu, "Synthesis of p-type Al-N codoped ZnO films using N2O as a reactive gas by RF magnetron sputtering", Applied Surface Science, 255 (2008) 2958-2962.
    [29] C. Imawan, H. Steffes, F. Solzbacher, E. Obermeier, "A new preparation method for sputtered MoO3 multilayers for the application in gas sensors", Sensors and Actuators B: Chemical, 78 (2001) 119-125.
    [30] M. Di Giulio, G. Micocci, A. Serra, A. Tepore, R. Rella, P. Siciliano, "SnO2 thin films for gas sensor prepared by r.f. reactive sputtering", Sensors and Actuators B: Chemical, 25 (1995) 465-468.
    [31] E. Bobeico, F. Varsano, C. Minarini, F. Roca, "P-type strontium-copper mixed oxide deposited by e-beam evaporation", Thin Solid Films, 444 (2003) 70-74.
    [32] M. H. Madhusudhana Reddy, A. N. Chandorkar, "E-beam deposited SnO2, Pt-SnO2 and Pd-SnO2 thin films for LPG detection", Thin Solid Films, 349 (1999) 260-265.
    [33] D. R. Sahu, S.-Y. Lin, J.-L. Huang, "Deposition of Ag-based Al-doped ZnO multilayer coatings for the transparent conductive electrodes by electron beam evaporation", Solar Energy Materials and Solar Cells, 91 (2007) 851-855.
    [34] J. Tamaki, C. Naruo, Y. Yamamoto, M. Matsuoka, "Sensing properties to dilute chlorine gas of indium oxide based thin film sensors prepared by electron beam evaporation", Sensors and Actuators B: Chemical, 83 (2002) 190-194.
    [35] C. Cantalini, H. T. Sun, M. Faccio, M. Pelino, S. Santucci, L. Lozzi, M. Passacantando, "NO2 sensitivity of WO3 thin film obtained by high vacuum thermal evaporation", Sensors and Actuators B: Chemical, 31 (1996) 81-87.
    [36] V. R. Katti, A. K. Debnath, K. P. Muthe, M. Kaur, A. K. Dua, S. C. Gadkari, S. K. Gupta, V. C. Sahni, "Mechanism of drifts in H2S sensing properties of SnO2:CuO composite thin film sensors prepared by thermal evaporation", Sensors and Actuators B: Chemical, 96 (2003) 245-252.
    [37] N. M. Shaalan, T. Yamazaki, T. Kikuta, "Influence of morphology and structure geometry on NO2 gas-sensing characteristics of SnO2 nanostructures synthesized via a thermal evaporation method", Sensors and Actuators B: Chemical, 153 (2011) 11-16.
    [38] S. Calnan, A. N. Tiwari, "High mobility transparent conducting oxides for thin film solar cells", Thin Solid Films, 518 (2010) 1839-1849.
    [39] F. Yakuphanoglu, "Electrical conductivity, Seebeck coefficient and optical properties of SnO2 film deposited on ITO by dip coating", Journal of Alloys and Compounds, 470 (2009) 55-59.
    [40] J. Ni, X. Zhao, X. Zheng, J. Zhao, B. Liu, "Electrical, structural, photoluminescence and optical properties of p-type conducting, antimony-doped SnO2 thin films", Acta Materialia, 57 (2009) 278-285.
    [41] D. Kohl, "Surface processes in the detection of reducing gases with SnO2-based devices", Sensors and Actuators, 18 (1989) 71-113.
    [42] A. Abdellaoui, G. Lévêque, A. Donnadieu, A. Bath, B. Bouchikhi, "Iteratively derived optical constants of MoO3 polycrystalline thin films prepared by CVD", Thin Solid Films, 304 (1997) 39-44.
    [43] L. Zheng, Y. Xu, D. Jin, Y. Xie, "Novel Metastable Hexagonal MoO3 Nanobelts: Synthesis, Photochromic, and Electrochromic Properties", Chemistry of Materials, 21 (2009) 5681-5690.
    [44] A. Sawaby, M. S. Selim, S. Y. Marzouk, M. A. Mostafa, A. Hosny, "Structure, optical and electrochromic properties of NiO thin films", Physica B: Condensed Matter, 405 (2010) 3412-3420.
    [45] K. M. Li, Y. J. Li, M. Y. Lu, C. I. Kuo, L. J. Chen, "Direct Conversion of Single-Layer SnO Nanoplates to Multi-Layer SnO2 Nanoplates with Enhanced Ethanol Sensing Properties", Advanced Functional Materials, 19 (2009) 2453-2456.
    [46] Y. Shen, T. Yamazaki, Z. Liu, C. Jin, T. Kikuta, N. Nakatani, "Porous SnO2 sputtered films with high H2 sensitivity at low operation temperature", Thin Solid Films, 516 (2008) 5111-5117.
    [47] D. Haridas, K. Sreenivas, V. Gupta, "Improved response characteristics of SnO2 thin film loaded with nanoscale catalysts for LPG detection", Sensors and Actuators B: Chemical, 133 (2008) 270-275.
    [48] X. Du, S. M. George, "Thickness dependence of sensor response for CO gas sensing by tin oxide films grown using atomic layer deposition", Sensors and Actuators B: Chemical, 135 (2008) 152-160.
    [49] G. Korotcenkov, I. Blinov, V. Brinzari, J. R. Stetter, "Effect of air humidity on gas response of SnO2 thin film ozone sensors", Sensors and Actuators B: Chemical, 122 (2007) 519-526.
    [50] M. V. Vaishampayan, R. G. Deshmukh, I. S. Mulla, "Influence of Pd doping on morphology and LPG response of SnO2", Sensors and Actuators B: Chemical, 131 (2008) 665-672.
    [51] J. H. Kwon, Y. H. Choi, D. H. Kim, M. Yang, J. Jang, T. W. Kim, S. H. Hong, M. Kim, "Orientation relationship of polycrystalline Pd-doped SnO2 thin film deposits on sapphire substrates", Thin Solid Films, 517 (2008) 550-553.
    [52] M. S. Wagh, G. H. Jain, D. R. Patil, S. A. Patil, L. A. Patil, "Surface customization of SnO2 thick films using RuO2 as a surfactant for the LPG response", Sensors and Actuators B: Chemical, 122 (2007) 357-364.
    [53] J. R. Yu, G. Z. Huang, Y. J. Yang, "The effect of gas concentration on optical gas sensing properties of Ag- and Pt-doped SnO2 ultrafine particle films", Sensors and Actuators B: Chemical, 66 (2000) 286-288.
    [54] G. Korotcenkov, B. K. Cho, L. Gulina, V. Tolstoy, "SnO2 thin films modified by the SnO2-Au nanocomposites: Response to reducing gases", Sensors and Actuators B: Chemical, 141 (2009) 610-616.
    [55] J. Xu, Q. Pan, Y. a. Shun, Z. Tian, "Grain size control and gas sensing properties of ZnO gas sensor", Sensors and Actuators B: Chemical, 66 (2000) 277-279.
    [56] G. Korotcenkov, "Gas response control through structural and chemical modification of metal oxide films: state of the art and approaches", Sensors and Actuators B: Chemical, 107 (2005) 209-232.
    [57] M. Ferroni, V. Guidi, G. Martinelli, M. Sacerdoti, P. Nelli, G. Sberveglieri, "MoO3-based sputtered thin films for fast NO2 detection", Sensors and Actuators B: Chemical, 48 (1998) 285-288.
    [58] C. Imawan, F. Solzbacher, H. Steffes, E. Obermeier, "Gas-sensing characteristics of modified-MoO3 thin films using Ti-overlayers for NH3 gas sensors", Sensors and Actuators B: Chemical, 64 (2000) 193-197.
    [59] S. S. Sunu, E. Prabhu, V. Jayaraman, K. I. Gnanasekar, T. Gnanasekaran, "Gas sensing properties of PLD made MoO3 films", Sensors and Actuators B: Chemical, 94 (2003) 189-196.
    [60] K. Shimura, K. Fujita, H. Kanai, K. Utani, S. Imamura, "Epoxidation of allyl acetate with tert-butyl hydroperoxide over MoO3/-Al2O3 promoted by pyridine derivatives", Applied Catalysis A: General, 274 (2004) 253-257.
    [61] K. H. Hassan, P. C. H. Mitchell, Evaluation of different methods to prepare the Fe2O3/MoO3 catalyst used for selective oxidation of methanol to formaldehyde, in: M. D. S. H. P. A. J. J. A. M. E.M. Gaigneaux, P. Ruiz (Eds.), Studies in Surface Science and Catalysis, vol Volume 175, Elsevier, 2010, pp. 475-478.
    [62] X. Wang, Z. He, S. Zhong, X. Xiao, "Photocatalytic Synthesis of Hydrocarbon Oxygenates from C2H6 and CO2 over Pd-MoO3/SiO2 Catalyst", Journal of Natural Gas Chemistry, 16 (2007) 173-178.
    [63] J. R. Sohn, S. H. Kwon, D. C. Shin, "Spectroscopic studies on NiO supported on ZrO2 modified with MoO3 for ethylene dimerization", Applied Catalysis A: General, 317 (2007) 216-225.
    [64] T. Ressler, A. Walter, Z. D. Huang, W. Bensch, "Structure and properties of a supported MoO3-SBA-15 catalyst for selective oxidation of propene", Journal of Catalysis, 254 (2008) 170-179.
    [65] I. Nova, L. Lietti, L. Casagrande, L. Dall'Acqua, E. Giamello, P. Forzatti, "Characterization and reactivity of TiO2-supported MoO3 De-NOx SCR catalysts", Applied Catalysis B: Environmental, 17 (1998) 245-258.
    [66] J. Zhu, F. Gao, L. Dong, W. Yu, L. Qi, Z. Wang, L. Dong, Y. Chen, "Studies on surface structure of MxOy/MoO3/CeO2 system (M = Ni, Cu, Fe) and its influence on SCR of NO by NH3", Applied Catalysis B: Environmental, 95 (2010) 144-152.
    [67] T. Brezesinski, J. Wang, S. H. Tolbert, B. Dunn, "Ordered mesoporous -MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors", Nat Mater, 9 (2010) 146-151.
    [68] B. Yan, Z. Zheng, J. Zhang, H. Gong, Z. Shen, W. Huang, T. Yu, "Orientation Controllable Growth of MoO3 Nanoflakes: Micro-Raman, Field Emission, and Birefringence Properties", The Journal of Physical Chemistry C, 113 (2009) 20259-20263.
    [69] Y. H. Choi, M. Yang, S. H. Hong, "H2 sensing characteristics of highly textured Pd-doped SnO2 thin films", Sensors and Actuators B: Chemical, 134 (2008) 117-121.
    [70] Y.-H. Choi, S.-H. Hong, "H2 sensing properties in highly oriented SnO2 thin films", Sensors and Actuators B: Chemical, 125 (2007) 504-509.
    [71] G. Liu, J. B. Kerr, S. Johnson, "Dark spot formation relative to ITO surface roughness for polyfluorene devices", Synthetic Metals, 144 (2004) 1-6.
    [72] 羅吉宗, "薄膜科技與應用", 全華科技圖書股份有限公司, 台北市, 2004.
    [73] L. Eckertova, T. Ruizicka: Diagnostics and Applications of Thin Films, Institute of Physics Publishing, 1993.
    [74] M. Ohring: The Materials Science of Thin Films, Academic Press, New Jersey, 1992.
    [75] L. John Vossen, W. Kerm: Thin Film Process, Academic Press, New York, 1999.
    [76] K. Ihokura, J. Watson: The Stannic Oxide Gas Sensor-Principles and Applications, CRC press, Toyko, 1994.
    [77] 莊弘毅, 陳克紹, "阻抗式濕度感測元件的製造方法", 乾坤科技股份有限公司, 中華民國(2002).
    [78] 陳男銘, “聚苯胺修飾高分子固態電解質氯氣感測器之研究”, 化學工程學系碩士論文, 成功大學, 台南(1995).
    [79] 林良諭, "利用溶膠-凝膠法製備固態高分子電解質之非酵素與高選擇性酒精感測器", 化學工程學系碩士論文, 成功大學, 台南(2009).
    [80] 郭陞贏, "以微製程及電化學法製備聚苯胺/黃金梳狀電極與其在電阻式丙酮氣體感測器之應用", 化學工程學系碩士論文, 東海大學, 台中(2007).
    [81] 李美嬅, "核殼式鈷白金/碳觸媒之製備及其氧氣還原反應特性探討", 化學工程與材料工程學系博士論文, 東海大學(2008).
    [82] 王世宏, "電阻式丙酮氣體感測器之導電高分子電極製備與感測性質", 東海大學化學系碩士論文, 台中(2005).
    [83] 蔡嬪嬪, 曾明漢, "氣體感測器之簡介、應用及市場", 材料與社會, 68 (1992) 50-61.
    [84] 一之瀨昇, 小林哲二, "感測器原理與應用技術”, 全華, (1986), pp. 144-153.
    [85] 林鴻明, 曾世杰, "奈米半導體材料之特殊氣體感測性質", 工業材料, 157 (2000) 163-169.
    [86] N. Hongsith, C. Viriyaworasakul, P. Mangkorntong, N. Mangkorntong, S. Choopun, "Ethanol sensor based on ZnO and Au-doped ZnO nanowires", Ceramics International, 34 (2008) 823-826.
    [87] B. T. Marquis, J. F. Vetelino, "A semiconducting metal oxide sensor array for the detection of NOx and NH3", Sensors and Actuators B: Chemical, 77 (2001) 100-110.
    [88] O. Merdrignac-Conanec, P. T. Moseley, "Gas-sensing properties of Ta-doped MoO3-x", Electrochemistry Communications, 1 (1999) 51-54.
    [89] G. Korotcenkov, V. Brinzari, Y. Boris, M. Ivanov, J. Schwank, J. Morante, "Influence of surface Pd doping on gas sensing characteristics of SnO2 thin films deposited by spray pirolysis", Thin Solid Films, 436 (2003) 119-126.
    [90] N. Jankovic, "Semiconductor sensors: S.M. Sze (ed.), John Wiley & Sons, New York, 1994", Microelectronics Journal, 28 (1997) 360-360.
    [91] H. Ohnishi, H. Sasaki, T. Matsumoto, M. Ippommatsu, "Sensing mechanism of SnO2 thin film gas sensors", Sensors and Actuators B: Chemical, 14 (1993) 677-678.
    [92] N. Yamazoe, J. Fuchigami, M. Kishikawa, T. Seiyama, "Interactions of tin oxide surface with O2, H2O and H2", Surface Science, 86 (1979) 335-344.
    [93] S. R. Morrison: The Chemical Physics of Surfaces, Plenum Press New York, 1990.
    [94] P. B. Weisz, "Effects of electronic charge transfer between adsorbate and solid on chemisorption and catalysis", The Journal of Chemical Physics, 21 (1953) 1531-1538.
    [95] S.-S. Park, J. D. Mackenzie, "Thickness and microstructure effects on alcohol sensing of tin oxide thin films", Thin Solid Films, 274 (1996) 154-159.
    [96] C. Xu, J. Tamaki, N. Miura, N. Yamazoe, "Grain size effects on gas sensitivity of porous SnO2-based elements", Sensors and Actuators B: Chemical, 3 (1991) 147-155.
    [97] G. Sberveglieri, S. Groppelli, P. Nelli, A. Camanzi, "Bismuth-doped tin oxide thin-film gas sensors", Sensors and Actuators B: Chemical, 3 (1991) 183-189.
    [98] K. H. Cha, H. C. Park, K. H. Kim, "Effect of palladium doping and film thickness on the H2-gas sensing characteristics of SnO2", Sensors and Actuators B: Chemical, 21 (1994) 91-96.
    [99] G. C. Bond, L. R. Molloy, M. J. Fuller, "Oxidation of carbon monoxide over palladium-tin(IV) oxide catalysts: an example of spillover catalysis", Journal of the Chemical Society, Chemical Communications, (1975) 796-797.
    [100] S. R. Morrison, "Selectivity in semiconductor gas sensors", Sensors and Actuators, 12 425-440.
    [101] N. Yamazoe, Y. Kurokawa, T. Seiyama, "Effects of additives on semiconductor gas sensors", Sensors and Actuators, 4 (1983) 283-289.
    [102] S. Matsushima, Y. Teraoka, N. Miura, N. Yamazoe, "Electronic interaction between metal additives and tin dioxide in tin dioxide-based gas sensors", Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 27 (1988) 1798-1802.
    [103] Z. M. Jarzebski, J. P. Marton, "Physical Properties of SnO2 Materials", Journal of the Electrochemical Society, 123 (1976) C199-C205.
    [104] T. Hahn, H. Wondratscheck, U. Miller, U. Shmueli, E. Prince: International Tables for Crystallography, John Wiley & Sons Inc, New York, 2010.
    [105] C. Ke, W. Zhu, J. S. Pan, Z. Yang, "Annealing temperature dependent oxygen vacancy behavior in SnO2 thin films fabricated by pulsed laser deposition", Current Applied Physics, In Press, Corrected Proof.
    [106] A. A. Yadav, E. U. Masumdar, A. V. Moholkar, M. Neumann-Spallart, K. Y. Rajpure, C. H. Bhosale, "Electrical, structural and optical properties of SnO2:F thin films: Effect of the substrate temperature", Journal of Alloys and Compounds, 488 (2009) 350-355.
    [107] E. Elangovan, S. A. Shivashankar, K. Ramamurthi, "Studies on structural and electrical properties of sprayed SnO2:Sb films", Journal of Crystal Growth, 276 (2005) 215-221.
    [108] A. Kaushal, P. Bansal, R. Vishnoi, N. Choudhary, D. Kaur, "Room-temperature ferromagnetism in Sn1-xMnxO2 nanocrystalline thin films prepared by ultrasonic spray pyrolysis", Physica B: Condensed Matter, 404 (2009) 3732-3738.
    [109] B. Zhang, Y. Tian, J. X. Zhang, W. Cai, "The structural and electrical studies on the Boron-doped SnO2 films deposited by spray pyrolysis", Vacuum, 85 (2011) 986-989.
    [110] V. Brinzari, G. Korotcenkov, V. Golovanov, J. Schwank, V. Lantto, S. Saukko, "Morphological rank of nano-scale tin dioxide films deposited by spray pyrolysis from SnCl4•5H2O water solution", Thin Solid Films, 408 (2002) 51-58.
    [111] V. Brynzari, G. Korotchenkov, S. Dmitriev, "Simulation of thin film gas sensors kinetics", Sensors and Actuators B: Chemical, 61 (1999) 143-153.
    [112] D. Szczuko, J. Werner, S. Oswald, G. Behr, K. Wetzig, "XPS investigations of surface segregation of doping elements in SnO2", Applied Surface Science, 179 (2001) 301-306.
    [113] N. L. V. Carreño, A. P. Maciel, E. R. Leite, P. N. Lisboa-Filho, E. Longo, A. Valentini, L. F. D. Probst, C. O. Paiva-Santos, W. H. Schreiner, "The influence of cation segregation on the methanol decomposition on nanostructured SnO2", Sensors and Actuators B: Chemical, 86 (2002) 185-192.
    [114] M. W. Barsoum: Fundamentals of ceramics, Institute of Physics Publishing, 2003.
    [115] T. Mizushima, K. Fukushima, H. Ohkita, N. Kakuta, "Synthesis of -MoO3 through evaporation of HNO3-added molybdic acid solution and its catalytic performance in partial oxidation of methanol", Applied Catalysis A: General, 326 (2007) 106-112.
    [116] M. Diskus, O. Nilsen, H. Fjellvag, "Growth of thin films of molybdenum oxide by atomic layer deposition", Journal of Materials Chemistry, 21 (2011) 705-710.
    [117] W.-Q. Yang, Z.-R. Wei, X.-H. Zhu, D.-Y. Yang, "Strong influence of substrate temperature on the growth of nanocrystalline MoO3 thin films", Physics Letters A, 373 (2009) 3965-3968.
    [118] K. R. Reddy, K. Ramesh, K. K. Seela, V. V. Rao, K. V. R. Chary, "Alkylation of phenol with methanol over molybdenum oxide supported on NaY zeolite", Catalysis Communications, 4 (2003) 112-117.
    [119] A. Goguet, S. Shekhtman, F. Cavallaro, C. Hardacre, F. C. Meunier, "Effect of the carburization of MoO3-based catalysts on the activity for butane hydroisomerization", Applied Catalysis A: General, 344 (2008) 30-35.
    [120] H. Al-Kandari, F. Al-Kharafi, A. Katrib, "Catalytic activity-surface structure correlation of molybdenum-based catalysts", Journal of Molecular Catalysis A: Chemical, 287 (2008) 128-134.
    [121] C.-S. Hsu, C.-C. Chan, H.-T. Huang, C.-H. Peng, W.-C. Hsu, "Electrochromic properties of nanocrystalline MoO3 thin films", Thin Solid Films, 516 (2008) 4839-4844.
    [122] T. Ivanova, K. A. Gesheva, G. Popkirov, M. Ganchev, E. Tzvetkova, "Electrochromic properties of atmospheric CVD MoO3 and MoO3-WO3 films and their application in electrochromic devices", Materials Science and Engineering B, 119 (2005) 232-239.
    [123] Y. Zhang, S. Kuai, Z. Wang, X. Hu, "Preparation and electrochromic properties of Li-doped MoO3 films fabricated by the peroxo sol-gel process", Applied Surface Science, 165 (2000) 56-59.
    [124] T. M. McEvoy, K. J. Stevenson, "Spatially resolved imaging of inhomogeneous charge transfer behavior in polymorphous molybdenum oxide. II. Correlation of localized coloration/insertion properties using spectroelectrochemical microscopy", Langmuir, 21 (2005) 3529-3538.
    [125] L. Zhou, L. Yang, P. Yuan, J. Zou, Y. Wu, C. Yu, "α-MoO3 Nanobelts: A High Performance Cathode Material for Lithium Ion Batteries", The Journal of Physical Chemistry C, 114 (2010) 21868-21872.
    [126] K. Dewangan, N. N. Sinha, P. K. Sharma, A. C. Pandey, N. Munichandraiah, N. S. Gajbhiye, "Synthesis and characterization of single-crystalline -MoO3 nanofibers for enhanced Li-ion intercalation applications", CrystEngComm, 13 (2011) 927-933.
    [127] M. D., H. Lindstrom, A. C. Bose, K. Ostrikov, "Monoclinic β-MoO3 nanosheets produced by atmospheric microplasma: application to lithium-ion batteries", Nanotechnology, 19 (2008) 495302.
    [128] S. Rajagopal, D. Nataraj, O. Y. Khyzhun, Y. Djaoued, J. Robichaud, K. Senthil, D. Mangalaraj, "Systematic synthesis and analysis of change in morphology, electronic structure and photoluminescence properties of pyrazine intercalated MoO3 hybrid nanostructures", CrystEngComm, 13 (2011) 2358.
    [129] G. Wei, W. Qin, D. Zhang, G. Wang, R. Kim, K. Zheng, L. Wang, "Synthesis and field emission of MoO3 nanoflowers by a microwave hydrothermal route", Journal of Alloys and Compounds, 481 (2009) 417-421.
    [130] Y. L. Xie, F. C. Cheong, Y. W. Zhu, B. Varghese, R. Tamang, A. A. Bettiol, C. H. Sow, "Rainbow-like MoO3 Nanobelts Fashioned via AFM Micromachining", The Journal of Physical Chemistry C, 114 (2009) 120-124.
    [131] J. Zhou, N. S. Xu, S. Z. Deng, J. Chen, J. C. She, Z. L. Wang, "Large-area nanowire arrays of molybdenum and molybdenum oxides: synthesis and field emission properties", Advanced Materials, 15 (2003) 1835-1840.
    [132] A. K. Prasad, D. J. Kubinski, P. I. Gouma, "Comparison of sol-gel and ion beam deposited MoO3 thin film gas sensors for selective ammonia detection", Sensors and Actuators B: Chemical, 93 (2003) 25-30.
    [133] A. K. Prasad, P. I. Gouma, "MoO3 and WO3 based thin film conductimetric sensors for automotive applications", Journal of Materials Science, 38 (2003) 4347-4352.
    [134] R. Tokarz-Sobieraj, K. Hermann, M. Witko, A. Blume, G. Mestl, R. Schlogl, "Properties of oxygen sites at the MoO3(010) surface: density functional theory cluster studies and photoemission experiments", Surface Science, 489 (2001) 107-125.
    [135] H. Han, J. W. Mayer, T. L. Alford, "Band gap shift in the indium-tin-oxide films on polyethylene napthalate after thermal annealing in air", Journal of Applied Physics, 100 (2006) 083715 - 083715-083716.
    [136] M. Quaas, C. Eggs, H. Wulff, "Structural studies of ITO thin films with the Rietveld method", Thin Solid Films, 332 (1998) 277-281.
    [137] P. Nath, R. F. Bunshah, "Preparation of In2O3 and tin-doped In2O3 films by a novel activated reactive evaporation technique", Thin Solid Films, 69 (1980) 63-68.
    [138] J. Popovic, B. Grzeta, E. Tkalcec, A. Tonejc, M. Bijelic, C. Goebbert, "Effect of tin level on particle size and strain in nanocrystalline tin-doped indium oxide (ITO)", Materials Science and Engineering: B, 176 (2011) 93-98.
    [139] W.-F. Wu, B.-S. Chiou, "Properties of radio-frequency magnetron sputtered ITO films without in-situ substrate heating and post-deposition annealing", Thin Solid Films, 247 (1994) 201-207.
    [140] K. L. Chopra, S. Major, D. K. Pandya, "Transparent conductors--A status review", Thin Solid Films, 102 (1983) 1-46.
    [141] 楊明輝, 金屬氧化物透明導電膜基本原理, 工業材料, 179, (2003).
    [142] I. Hamberg, C. G. Granqvist, K. F. Berggren, B. E. Sernelius, Engstr, ouml, L. m, "Band-gap widening in heavily Sn-doped In2O3", Physical Review B, 30 (1984) 3240.
    [143] I. Hamberg, C. G. Granqvist, "Evaporated Sn-doped In2O3 films: Basic optical properties and applications to energy-efficient windows", Journal of Applied Physics, 60 (1986) R123-R160.
    [144] 李玉華, "透明導電膜及其應用", 科儀新知, 79(1990), pp. 94-102.
    [145] J. M. Bennett, "Optical scattering and absorption losses at interfaces and in thin films", Thin Solid Films, 123 (1985) 27-44.
    [146] W. L. Masterton, C. N. Hurley: Chemistry: Principles and Reactions, Cengage Learning, Takara Belmont, 2008.
    [147] J. F. Moulder, W. F. Stickle, P. E. Sobol, K. D. Bomben: Handbook of X-Ray Photoelectron Spectroscopy, Perkin-Elmer Corp., Eden Prairie, MN, USA, 1995.
    [148] A. K. Prasad, P. I. Gouma, D. J. Kubinski, J. H. Visser, R. E. Soltis, P. J. Schmitz, "Reactively sputtered MoO3 films for ammonia sensing", Thin Solid Films, 436 (2003) 46-51.
    [149] P. R. Roberge: Handbook of Corrosion Engineering, McGraw-Hill, 2000.
    [150] E. A. Gulbransen, K. F. Andrew, F. A. Brassart, "Vapor Pressure of Molybdenum Trioxide", Journal of the Electrochemical Society, 110 (1963) 242-243.
    [151] E. R. Leite, T. R. Giraldi, F. M. Pontes, E. Longo, A. Beltran, J. Andres, "Crystal growth in colloidal tin oxide nanocrystals induced by coalescence at room temperature", Applied Physics Letters, 83 (2003) 1566-1568.
    [152] C. Ribeiro, E. J. H. Lee, T. R. Giraldi, R. Aguiar, E. Longo, E. R. Leite, "In situ oriented crystal growth in a ceramic nanostructured system", Journal of Applied Physics, 97 (2005) 024313.
    [153] A. L. Patterson, "The Scherrer Formula for X-Ray Particle Size Determination", Physical Review, 56 (1939) 978.
    [154] K. Jain, R. P. Pant, S. T. Lakshmikumar, "Effect of Ni doping on thick film SnO2 gas sensor", Sensors and Actuators B: Chemical, 113 (2006) 823-829.
    [155] J. Arbiol, J. R. Morante, P. Bouvier, T. Pagnier, E. A. Makeeva, M. N. Rumyantseva, A. M. Gaskov, "SnO2/MoO3-nanostructure and alcohol detection", Sensors and Actuators B: Chemical, 118 (2006) 156-162.
    [156] B. Panchapakesan, R. Cavicchi, S. Semancik, D. L. DeVoe, "Sensitivity, selectivity and stability of tin oxide nanostructures on large area arrays of microhotplates", Nanotechnology, 17 (2006) 415-425.
    [157] J. Spannhake, A. Helwig, G. Müller, G. Faglia, G. Sberveglieri, T. Doll, T. Wassner, M. Eickhoff, "SnO2:Sb - A new material for high-temperature MEMS heater applications: Performance and limitations", Sensors and Actuators B: Chemical, 124 (2007) 421-428.
    [158] M. Niwa, J.-Y. Igarashi, "Role of the solid acidity on the MoO3 loaded on SnO2 in the methanol oxidation into formaldehyde", Catalysis Today, 52 (1999) 71-81.
    [159] Z. Zhu, J. Ma, C. Luan, L. Kong, Q. Yu, "Structure and photoluminescence properties of epitaxial SnO2 films grown on -Al2O3 (0 1 2) by MOCVD", Journal of Luminescence, In Press, Corrected Proof (2010).
    [160] V. V. Kovalenko, A. A. Zhukova, M. N. Rumyantseva, A. M. Gaskov, V. V. Yushchenko, I. I. Ivanova, T. Pagnier, "Surface chemistry of nanocrystalline SnO2: Effect of thermal treatment and additives", Sensors and Actuators B: Chemical, 126 (2007) 52-55.
    [161] A. Corma, "Inorganic Solid Acids and Their Use in Acid-Catalyzed Hydrocarbon Reactions", Chemical Reviews, 95 (1995) 559-614.
    [162] L. M. Surhone, M. T. Timpledon, S. F. Marseken: Standard Electrode Potential, VDM Verlag Dr. Mueller AG & Co. Kg, 2010.
    [163] E. d. B. Santos, J. M. de Souza e Silva, I. O. Mazali, "Morphology and phase modifications of MoO3 obtained by metallo-organic decomposition processes", Materials Research Bulletin, 45 (2010) 1707-1712.
    [164] J. C. Volta, W. Desquesnes, B. Moraweck, J. M. Tatibouet, On the Reactive Specificity of (020) Crystalline Faces of MoO3 in Selective Oxidation, in: T. Seiyama, K. Tanabe (Eds.), Studies in Surface Science and Catalysis, vol Volume 7, Part 2, Elsevier, 1981, pp. 1398-1399.
    [165] L.-J. Meng, A. Maçarico, R. Martins, "Study of annealed indium tin oxide films prepared by rf reactive magnetron sputtering", Vacuum, 46 (1995) 673-680.
    [166] C. H. Yi, I. Yasui, Y. Shigesato, "Effects of Tin Concentrations on Structural Characteristics and Electrooptical Properties of Tin-Doped Indium Oxide-Films Prepared by Rf Magnetron Sputtering", Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 34 (1995) 600-605.
    [167] H.-C. Lee, O. O. O. Ok Park, "Electron scattering mechanisms in indium-tin-oxide thin films: grain boundary and ionized impurity scattering", Vacuum, 75 (2004) 275-282.

    無法下載圖示 校內:2016-08-30公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE