| 研究生: |
戴永昇 Tai, Yung-Sheng |
|---|---|
| 論文名稱: |
沖刷帶內溯升之研究 The investigation of the run-up on the swash zone |
| 指導教授: |
黃煌煇
Hwung, Hwung-Hweng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 57 |
| 中文關鍵詞: | N形波 、溯升 、沖刷帶 |
| 外文關鍵詞: | N-wave, Run-up, Swash zone |
| 相關次數: | 點閱:119 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
波浪的最大溯升高度是許多海岸防禦結構物一個重要的設計標準,例如防波堤、海堤和護岸等,準確地預估最大溯升高除了可以保障沿海地區居民之生命安全,並且可以避免工程經濟上的浪費。因此為了瞭解波浪碎波後之溯升問題,本文以實驗方法研究沖刷帶內最大溯升高之波動機制,並且為了瞭解長週期波浪對於沖刷帶內之影響,本文也進一步探討近似孤立波之N形波從深海傳遞至淺海之演化過程。實驗於國立成功大學台南水工試驗所之大型斷面水槽(長300m,寬5m,深5.2m)進行,為了量測波浪碎波後在沖刷帶內之溯升現象,實驗共有規則波、雙主頻波及三波波列等三種不同型態之波浪,分別在坡度1/10、1/20及1/40之斜坡上進行量測,而N形波之傳動演化特性部分則在坡度1/40之斜坡上進行量測。根據實驗分析結果,深海碎波相似參數和相對最大溯升高之關係經迴歸分析後發現規則波的線性關係較為良好,然而波浪在水槽中經過長時間的演化,受到副頻不穩定性的影響,波浪尖銳度越大者會造成波浪在深海發生程度不一的碎波事件,波浪碎波時拍擊水體引發長波振盪之現象,進而影響最大溯升高的發展,因此本文把最大溯升高分離成受到長波成份影響與短波成份影響兩部分,分別探討其影響性;而雙主頻波和三波波列之實驗試次則受到角頻率差和副頻相對主頻振幅比的不同,使沖刷帶內部的波動特性更為複雜。N形波傳動演化特性部分,根據實驗分析結果,當N形波在斜坡上傳遞時,受到淺化效應的影響將導致波形不對稱,並且相對振幅(A0/d0)較大的試驗條件會發生裂解過程(fission process)。在靠近外海處,當波峰通過時之水平流速剖面呈現均勻性的分布,然而隨著水深變淺會有增強的趨勢;垂直流速則相對較小,僅在碎波時有較大速度的產生。
In present study, a series of elaborate experiments are performed in a super wave flume ( ) at Tainan Hydraulics Laboratory, National Cheng Kung University. The main purpose of this study is to find out the run-up height on the artificial structure, such as breakwater, dike and artificial reef. Therefore, it is significant to understand the run-up mechanism on the swash zone. Moreover, the effect of long wave on the swash zone with the evolution process of N-waves from deep water to shallow water depth would be further investigated. Three typical waves, including mono-chromatic wave, bi-chromatic wave and tri-chromatic wave, are measured to analyze the phenomenon of run-up after wave breaking on bottom slope 1/10, 1/20 and 1/40. Two typical cases of N-waves, with 2.5m working water depth on 1/40 slope are measured in this study. According to our experimental results, surf parameter agrees well with relative maximum run-up height in mono-chromatic wave conditions by regression analysis. However, the development of maximum run-up height is closely related to the breaking events in the deep water depth due to sideband instability. The maximum run-up height would be divided into two components as long wave and short wave. Surprisingly, the experiments of bi-chromatic wave and tri-chromatic wave conditions are also concerned with the angular frequency difference and the ratio of the sideband amplitude to the carrier wave amplitude. According to our experimental results for the evolution process of N-waves, wave shape becomes asymmetric owing to shoaling effect while propagating over the beach. The fission process of N-waves in this study is produced in the case of larger relative amplitude (A0/d0). The distribution of horizontal velocities underneath the wave crest appears quite uniform offshore, and increases accompanied with the shallower water depth. Comparatively, the vertical velocity profiles keep tiny values till the onset of wave breaking.
1. Granthem, K.N., 1953. “A model study of wave run-up on sloping structures”, Technical Report, Series 3, Issue 348, Institute of Engineering Research, University of California, Berkeley, California.
2. Saville Jr., T., 1955. “Laboratory data on wave run-up and overtopping on shore structure”, Technical Memorandum No. 64, Beach Erosion Board, U.S. Army Corps of Engineers, Washington, DC.
3. Saville Jr., T., 1956. “Wave run-up on shore structures”, Journal of the Waterways Division, vol. 82, no. WW2. American Society of Civil Engineers, pp. 925-1–925-14.
4. Saville Jr., T., 1958. “Wave run-up on composite slopes”, Proceedings of the 6th International Coastal Engineering Conference. American Society of Civil Engineers, pp. 691– 699.
5. Savage, R.P., 1958. “Wave run-up on roughened and permeable slopes”, Journal of the Waterways and Harbors Division, vol. 84, no. WW3. American Society of Civil Engineers, pp. 1640-1–1640-38.
6. Hunt, I.A., 1959. “Design of seawalls and breakwaters”, Journal of the Waterways and Harbors Division, vol. 85, no. WW3. American Society of Civil Engineers, pp. 123– 152.
7. Battjes, J.A., 1974a. “Surf similarity”, Proceedings of the 14th International Coastal Engineering Conference, vol. 1. American Society of Civil Engineers, pp. 466– 480.
8. Iribarren, C.R., Nogales, C., 1949. “Protection des Ports”, XVIIth International Navigation Congress, Section II, Communication. , pp. 31–80.
9. Iwagaki, Y., A. Shima and M. Inoue (1965) “Effects of wave height and sea water level on wave overtopping and wave run-up”, Coast.Engrg. In Japan, 8, pp. 141-151.
10. Hashimoto, H. (1973) “An experimental study on irregular wave run-up on a coastal dike”, Coast. Engrg. In Japan, 16, pp. 123-136.
11. Mase, H. and Y. Iwagaki (1984) “Run up of random wave on gentle slopes”, Proc., 19th Conf. on Coast. Engrg., ASCE, pp.593-609.
12. Yamamoto, Y. and K. Horikawa (1992) “New methods to evaluate wave run-up height and overtopping rate”, Proc. 23rd Conf. on Coast. Engrg., ASCE, pp. 1734-1747.
13. Grüne, J. (1982) “Wave run-up caused by natural storm surge waves”, Proc., 18th Conf. on Coast. Engrg., ASCE, pp. 785-803.
14. Sparboom, U., J. Grüne, S. Groshe and M. Haidekker (1990) “Full-scale measurements of wave run-up at sea dikes”, Proc. 22th Conf. on Coast. Engrg., ASCE, pp. 895-908.
15. Goring, D. G. (1979) “Tsunami: The propagation of long waves on a shelf”, Ph. D. thesis, California Institute of Technology.
16. Tadepalli, S., and Synolakis, C. E. (1995) “The run up of N-waves on sloping beaches.”, Proc., Roy. Soc. A, London, U.K., 445, 99-112.
17. Lin, P., Chang, K.-A. and Liu, P. L.-F. (1999) “Runup and rundown of solitary waves on sloping beaches“, J.wtrwy., Port, and Coast., Engrg., 125, 247-255.
18. Liu, P.L.-F. & Cheng, Y. (2001), “A numerical study of the evolution of a solitary wave over a shelf ” , Phys. Fluids.
19. Hwung, H. H., Lin, Y. H. and Tai, Y. S. (2006), “The Flow Pattern of N-waves over A Mild Slope ” , 7th ICHD.
20. Benjamin, T. B. and Feir, C. M. (1967) “The disintegration of wave trains on deep water. Part 1. Theory,” Journal of Fluid Mechanics, Vol. 27, pp.417-430.
21. 林宇銜,黃煌煇,戴永昇,「沖刷帶內波動機制之探討」,中華民國力學學會第廿九屆全國力學會議論文集(2005),B029。
22. 黃煌煇,戴永昇,林宇銜,張裕弦,「N形長波傳動演化之實驗研究」,第十五屆水利工程研討會(2006),L20-L27。
23. 黃煌煇,江文山,「均勻水深之波浪調變」,第二十七屆中華民國力學會議論文集(2003)。