| 研究生: |
劉建志 Liu, Chien-Chih |
|---|---|
| 論文名稱: |
高亮度發光二極體之設計與製作 Design and Fabrication of High Brightness LEDs |
| 指導教授: |
王永和
Wang, Yeong-Her 洪茂峰 Houng, Mau-Phon |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 英文 |
| 論文頁數: | 125 |
| 中文關鍵詞: | 覆晶 、選擇性高電阻區 、電流分佈層 、發光二極體 |
| 外文關鍵詞: | flip-chip, selective high resistivity region, Current spreadinglayer, LED |
| 相關次數: | 點閱:62 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
最近,由於磊晶成長技術突破,可得到優良品質的結晶,因此發光亮度急速提升,已被用來生產高亮度的發光二極體。雖然內部量子效率已可達99% 以上,但外部量子效率還是很低,以藍光而言甚至不到10%,電流分佈與光取出是提高外部量子效率重要技術。本論文將設計與製作電流分佈層以達到發光二極體電流均勻分佈及鍍一層折射率匹配之保護層以增加光取出,進而增加發光二極體發光效率。
本論文,設計一些新的發光二極體製作方法以提高發光效率,(一)氮化鈦(TiN)擁有低片電阻、不錯的穿透率、折射率匹配、堅硬物理特性與穩定的化學特性,我們將氮化鈦鍍在磷化鋁銦(AlGaInP)發光二極體上當電流分佈層,增加二極體電流均勻分佈能力,以提高發光亮度。(二)利用p型氮化鎵(GaN)活化時,有鎳金屬催化可降低退火溫度的特性,在GaN發光二極體p型電極下方不鍍鎳金屬當催化劑,而在二極體其他面積鍍上鎳金屬當催化劑,在相同溫度退火可產生不同電洞濃度,因而產生不同電阻率,在二極體p型電極下方因無鎳金屬當催化劑,此區電阻率比其他區域大,利用此觀念設計選擇性高電阻區(SHRR)在氮化鎵發光二極體電極下方當阻擋層,避免電流流向這個區域(此區光被電極阻擋而反射被吸收),使電流流向有效發光區域,以提高發光亮度。(三)目前高功率氮化鎵二極體大多以覆晶技術製作,此研究建立無鉛銲錫覆晶技術,將雷射以銦化金(Au-In) 銲錫覆晶在矽基板上評估覆晶技術,以銲錫微觀結構及雷射特性來評估覆晶製作流程,以建立覆晶技術應用於高功率氮化鎵二極體製作。
結果顯示,(一)在大電流工作下,氮化鈦電流分佈層能使電流均勻分佈,在100mA工作電流下光輸出強度較無氮化鈦電流分佈層增加9%。而且光輸出無飽和現像,顯示其散熱能力很好。另一方面,大面積發光二極體(2mm × 2mm)在100mA工作電流下,雖然發光二極體面積增加四倍,無氮化鈦電流分佈層光輸出強度只增加4%,而有透明導電層LED,因透明導電層將電流擴散,其光輸出強度可增加20%,氮化鈦電流分佈層在大面積二極體、大電流操作下,可明顯提升光輸出強度,有利於高功率二極體製作。
(二)有選擇性高電阻區當阻擋層之發光二極體,能有效阻擋電流流向電極下方之作用區,使電流流向有效發光區域,在20mA工作電流下,光輸出強度增加15%,其大小與電流因阻擋層作用,而流向可用區域大小比例吻合。選擇性高電阻區當阻擋層之發光二極體,以簡單微影製程技術即可完成,取代傳統阻擋層以蝕刻方式,蝕刻金屬電極位置下方p-GaN,並利用再成長方式成長絕緣層,大幅降低製程複雜性以提高元件良率。
(三)我們成功建立銦化金無鉛銲錫覆晶技術,在200oC回火可得最佳銲錫微觀結構及雷射特性,為了了解環境應力與元件操作時對銲料層所造成的影響,接合後的雷射更進一步的進行500個循環的熱衝擊測試以及高溫儲存測試,測試後雷射的特性並沒有驟然的退化跡象且聯結的機械強度幾乎沒改變,代表著銦化金銲料具有不錯的抗熱疲勞特性以及熱穩定性。將利用此技術於高功率氮化鎵二極體製作。
Recently, the high brightness light emitting diodes (LEDs) have been obtained because of the growth of epitaxy technology. However, LED light output is still low compared to conventional light sources for high-flux lighting systems, making necessary further improvements to LED light-output efficiency. Although, the internal quantum efficiency is up to 99% for a good quality crystalline, it has only 10% external quantum efficiency of blue and green LED has been announced. Current spreading and light extraction are of major importance for obtaining a high external quantum efficiency LED. So, the purpose of this thesis is design and fabrication of current spreading to improve the external quantum efficiency.
In this thesis, we design some methods of fabrication-process to improve light-output. First, thin titanium nitride (TiN) films with low sheet resistance, excellent transparency, refractive-index-matching, physical toughness and chemical stability are deposited on AlGaInP light emitting diodes (LEDs) as current spreading layer to improve light extraction from the LED surface. Secondly, The resistivity of p-type GaN with-Ni catalytic activation is smaller than without-Ni catalytic activation. We utilize this resistivity difference to modify current flow. A novel selective high resistivity region (SHRR) is created under the p-pad metal electrode of a normal GaN LED as a blocking layer to make current spreading uniformly. Finally, the flip-chip LED (FCLED) can improve performance in lifetime tests and output power compared to top-emitting power GaN-based LEDs. Flip-chip bonding is an important technique for the fabrication of GaN-based high power LEDs. We developed a fluxless bonding process to manufacture In-Au microjoint between laser diode and silicon substrate to optimal fabrication-process prepared for GaN based high power LED fabrication.
At high injection current, the TiN films spread the current over a larger area of device and improve distribution of light emission. And light-output power at 100mA for the LED with TiN film is 9% higher than that without TiN film. Comparing the 1x1mm with the 2x2mm devices represents a four times increase in area. Without TiN, light output increases around 4% for this four times area increase. With TiN, light output increases by around 20% for the same area increase. The results demonstrate that a TiN thin film contact layer on an AlGaInP LED can spread LED injection current over a larger area of the device and improve distribution of light emission at high injection currents. Therefore, current crowding effects are reduced and device light output is significantly improved.
An approximately 15% increase in light output power has been achieved in GaN LEDs with SHRR structure. In conventional designs, light generated under the opaque p-pad metal electrode is absorbed or reflected by the contact and lost. With SHRR, the area under the p-pad metal electrode is selectively given a higher resistance, thus reducing injection current, light generation and light loss under the contact. The current normally passing through the SHRR region is instead distributed over the visible and therefore useful area of the device. This results in significant increase of light output power and luminous efficiency.
Additionally, we have successful developed a fluxless bonding process to manufacture In-Au microjoint between laser diode and silicon substrate, and study the interface properties and microstructure of In-Au layer. From these results, we can find that the optimal bonding temperature is 200 oC for our bonding process. To verify the thermal stability, bonded samples are tested by thermal shock test and high temperature storage. All well bonded LDs show no abrupt degradation from I-V and L-I plots and the mechanical strength is as almost the same as pre-tested. This shows that indium has decent thermal fatigue property and thermal stability. The optimal process of flip-chip bonding process will apply to high power GaN-based LED fabrication.
[1] H. Rupprecht, J. M. Woodall, and G. D. Petit, “ Efficient visible electroluminescence at 300 K from Ga1-xAlxAs p-n junctions grown by liquid-phase epitaxy,” Appl. Phys. Lett. Vol. 11, pp. 81-83, 1967.
[2] J. Nishizawa, and K. Suto, “ Minority-carrier lifetime measurements of efficient GaAlAs p-n heterojunctions,” J. Appl. Phys. Vol. 43, p. 3484, 1977.
[3] H. Sugawara, M. Ishikawa, and G. Hatakoshi, “ High-efficiency InGaAlP/GaAs visible light-emitting diodes,” Appl. Phys. Lett. Vol. 58, p. 1010,1991
[4] F. A. Kish, D. A. Vaderwater, D. C. Defevere, D. A. Steigerwald, G. E. Höfler, K. G. Park, and F. M. Steranka, “Highly reliable and efficient semiconductor wafer-bonded AlGaInP/GaP light-emitting diodes,” Electron Lett., Vol. 32, pp. 132-134, 1996
[5] S. Nakamura, N. Iwasa, M. Senoh, and T. Mukai, “ Hole compensation mechanism of P- type GaN films,” Jpn. J. Appl. Phys. Vol. 31, p. 1258, 1992
[6] C. H. Chen, S. A. Stockman, M. J. Peanasky, and C. P. Kuo, “ OMVPE growth of AlInGaP for high-efficiency visible light emitting diodes,” in High-Bright Light-Emitting Diodes, Vol. 48, Semiconductors and Semimetals. G. B. Stringfellow and M. G. Craford, Eds. New York: Academic, 1997.
[7] M. J. Ludowise, “Metalorganic chemical vapor deposition of III-V semiconductors,” J. Appl. Phys., Vol. 58, pp. R31-R55, 1985
[8] S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-emitting diodes,” Appl. Phys. Lett., Vol. 64, pp. 1687-1689, 1994.
[9] I. Eliashevich, Y. Li, A. Osinsky, C. A. Tran, M. G. Browm, and R. F. Karlicek, “ InGaN blue light-emitting diodes with optimized n-GaN layer,” in SPIE CONF. Light-Emitting Diodes: Research, Manufacturing, and Applications- Part III, Vol. 3621, pp. 28-36, 1999.
[10] G. B. Stringfellow, and M. George Craford, “ High brightness light emitting diodes”, Vol. 48, Semiconductors and Semimetals. New York: Academic, 1997.
[11] M. Fukuda, “Optical semiconductor devices,” Wily Interscience Publication, 1999.
[12] E. F. Schubert, “Light-emitting diodes,” Cambridge University Press, 2003.
[13] W. T. Wang, M. P. Houng, and Y. H. wang, “The study of TiN as transparent contact for visible light emitting diodes”, Thesis of E.E., NCKU, Tainan, Taiwan, 2002.
[14] K. W. Chu, M. P. Houng, and Y. H. wang, “The analysis for films on LEDs as transparent conductive films”, Thesis of E.E., NCKU, Tainan, Taiwan, 2003.
[15] R. M. Fletcher, C. P. Kuo, T. D. Osentowski, K. H. Huang, M. G. Craford, and V. M. Robbins, “ The growth and properties of high performance AlGaInP emitters using a lattice mismatched GaP window layer,” J. Electron. Mater. 20, pp 1125-1130, 1991
[16] J. M. Dallesasse, P. Gavrilovic, N. Holonyak, R. W. Kaliski, D. W. Nam, and E. J. Vesely, “ Stability of AlAs in AlxGa1-xAs-AlAs quantum well heterostructures,” Appl. Phys. Lett., Vol. 56, pp. 2436-2438, 1990.
[17] D. A. Vanderwater, I. H. Tan, G. E. Höfler, D. C. Defevere, and F. A. Kish, “High-Brightness AlGaInP light emitting diodes”, Pro. of IEEE, Vol. 85, 1752-1764, 1997.
[18] Y. H. Aliyu, D. V. Morgan, H. Thomas and S. W. Bland, “AlGaInP LEDs using reactive thermally evaporated transparent conducting indium tin oxide (ITO),” Electron Lett.Vol. 31, pp 1691-1692, 1995.
[19] M. C. Wu, J. F. Lin, M. J. Jou, C. M. Chang, and B. J. Lee,” High reliability of AlGaInP LEDs with efficiency transparent contacts for spatially uniform light emission,” IEEE Electron Device Letter, Vol. 11, pp 482-485, 1995
[20] H. Kim, J. M. Lee, C. Huh, S. W. Kim, D. J. Kim, S. J. Park, and H. Hwang, “ Modeling of a GaN-based light-emitting diode for uniform current spreading,” Appl. Phys. Lett. , Vol. 77, pp 1903-1905, 2000.
[21] H. Kim, S. P. Park, and H. Hwang, “Effects of current spreading on the performance of GaN-Based light-emitting diodes,” IEEE Trans. Electron Device, Vol. 48, pp1065-1068, 2001.
[22] P. J. Hartlieb, A. Roskowski, and R. F. Davis, “ Chemical, electrical, and structural properties of Ni/Au contacts on chemical vapor cleaned p-type GaN,” J. Appl. Phys, Vol. 91, pp 9151-9160, 2002.
[23] J. K. Ho, C. S. Jong, C. C. Chiu, C. N. Huang, C. Y. Chen, and K. K. Shih, “Low-resistance ohmic contacts to p-type GaN,” Appl. Phys. Lett. Vol. 74, pp. 1275-1277, 1999.
[24] J. S. Kwak, J. Cho, S. ChAe, O. H. Nam, C. Sone and Y. Park, “ The role of an overlayer in the formation of Ni-based transparent ohmic contact to p-GaN,” Jpn. J. Appl. Phys., Vol. 40, pp. 6221-6225, 2001.
[25] J. K. Ho, C. S. Jong, C. C. Chiu, C. N. Huang, and K. K. Shih,” Low-resistance ohmic contacts to p-type GaN achieved by the oxidation of Ni/Au films,” J. Appl. Phys. Vol. 86, pp. 4491-4497, 1999.
[26] T. Margalith, O. Buchinsky, D. A. Cohen, A. C. Abare, M. Hansen, S. P. Denbaars, and L. A. Coldren, “ Indium tin oxide contact to gallium nitride optoelectronic devices,” Appl. Phys. Lett. , Vol.74, pp. 3930-3932, 1999.
[27] S. M. Pan, R. C. Tu, Y. M. Fan, R. C. Yeh, and J. T. Hsu, “ Improvement of InGaN-GaN light-emitting diodes with surface–textured indium-tin-oxide transparent ohmic contacts,” IEEE Photonics Technology Letters, Vol. 15, No. 5, pp. 649-651, 2003
[28] S. M. Pan, R. C. Tu, Y. M. Fan, R. C. Yeh, and J. T. Hsu, “ Enhanced output power of InGaN-GaN light-emitting diodes with high–transparency nickel-oxide-indium-tin-oxide ohmic contacts,” IEEE Photonics Technology Letters, Vol. 15, No. 5, pp. 646-648, 2003
[29] H. Sugawara, K. Itaya, H. Nozaki, and G. Hatakoshi, “ High brightness AlGaInP green light-emitting diodes,” Appl. Phys. Lett. Vol. 61, pp. 1775-1777, 1992
[30] C. Huh, J. M. Lee, D. J. Kim, and S. J. Park, “Improvement in light-output efficiency of InGaN/GaN multiple-quantum well light-emitting diodes by current blocking layer,” J. Appl. Phys., Vol. 92, pp 2248-2250, 2002.
[31] Y. H. Chen, M. P. Houng, and Y. H. wang, “Improvement in light-output intensity of GaN-based LED device by selective area activation,” Thesis of E.E., NCKU, Tainan, Taiwan, 2003.
[32] Y. T. Lu, M. P. Houng, and Y. H. wang, “Improvement in light output efficiency of InGaN/GaN blue LED by current blocking layer and surface passivation layer,” Thesis of E.E., NCKU, Tainan, Taiwan, 2003.
[33] X. Gage et al., “Optoelectronics/Fiber Optics Applications Manual,” New York: McGraw-Hill, 1981, Chap. 2.
[34] K. J. Knopp, R. P. Mirin, K. A. Bertness, K. L. Silverman, and D. H. Christensen, “Compound semiconductor oxide antireflection coating,” J. Appl. Phys., vol.87, p. 7169, 2000.
[35] X. C. Wang, S. J. Chua, K. Li, X. H. Zhang, K. B. Chong, and X. Zhang, “ Strong influence of SiO2 thin film on properties of GaN epilayers,” Appl. Phys. Lett., Vol. 74, p. 818, 1999.
[36] I. Waki, H. Fujioka, and M. Oshima, H. Miki, and M. Okuyama, “ Mechanism for low temperature activation of Mg-doped GaN with Ni catalysts,” J. Appl. Phys., Vol. 90, p.6500-6504, 2001.
[37] B. A. Hull, S. E. Mohney, H. S. Venugoplan and J. C. Ramer, “Influence of oxygen on the activation of p-type GaN,” Appl. Phys. Lett. , Vol.76, p. 2271, 2000.
[38] H. Amano, M. Kito, K. Hiramatsu, N. Sawaki, and I. Akasaki, “ P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI),” Jpn. J. Appl. Phys., Vol. 28, p. L2112, 1989.
[39] S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, “Thermal annealing effect on p-type Mg-doped GaN film,” Jpn. J. Appl. Phys. Vol. 31, pp. L139-L142, 1992.
[40] I. Waki, H. Fujioka, M. Oshima, H. Miki, and M. Okuyama,“ Low-temperature activation of Mg-doped GaN with thin Co and Pt films,” Applied Surface Science, Vol. 190, pp 339-242, 2002.
[41] I. Waki, H. Fujioka, M. Oshima, H. Miki, and M. Okuyama,“ Catalytic effect of Ni for activation of Mg-doped GaN in N2 and N2O,” Journal of Crystal Growth, Vol. 234, pp 459-462, 2002.
[42] H. S. Venugopalan, S. E. Mohney, B. P. Luther, S. D. Wolter, and J. M. Redwing, “ Interfacial reactions between nickel thin films and GaN,” J. Appl. Phys., Vol. 82, pp. 650-654, 1997.
[43] D. V. Mogan, Y. H. Aliyu, R. W. Bunch, S. Barren, and T. Boss, ”Electrical and optical properties of high performance MOCVD grown (AlxGa1-x)In0.5P visible LEDs,” Electron. Lett, Vol. 22, pp.1991-1992, 1993.
[44] F. A. Kish, F. M. steranka, D. C. Defevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. peanasky, J. G. Yu, R. M. fletcher, D. A. steigerwald, and M. G. Craford, “ Very High-effficiency Semiconductor Wafer-bonded Transparent-substrate (Alx Ga1-x)0.5 In0.5P/GaP Light-emitting Diodes,” Appl. Phys. Lett. Vol. 64, pp. 2839-2841, 1994.
[45] J. F. Lin, M. C. Wu, M. J. Jou, C. M. Chang, and B. J. Lee, “High Reliability operation of indium tin oxide AlGaInP orange light-emitting diodes,” Electron Lett., Vol. 30, pp.1793-1794, 1994.
[46] G. E. Höfler, D. A. Vanderwater, D. C. Defevere, F. A. Kish, M. D. Camras, F. M. Steranka, I. H. Tan, “Wafer bonding of 50-mm diameter GaP to AlGaInP-GaP light-emitting diode wafers,” Appl. Phys. Lett., Vol. 69, pp. 803-805, 1996.
[47] K. H. Huang, J. G. Yu, C. P. Kuo, R. M. fletcher, T. D. Osentowski, L. J. Stinson, and M. G. Craford, “ Twofold efficiency improvement in high performance AlGaInP light-emitting diodes in the 555-620 nm spectral region using a thick Gap window layer,” Appp. Phys. Lett., Vol. 61, pp. 1045-1047, 1992.
[48] G. C. Chi, Y. K. Su, M. Jou, and W. C. Hung, “ Window layer for current spreading in AlGaIn P light-emitting diode,” J. Appl. Phys., Vol. 76, pp. 2603-2611, 1994.
[49] M. Kiuchi and A. Chayahara, “Titanium nitride for transparent conductors,” Appl. Phys. Lett., Vol. 64, pp.1048-1049, 1994.
[50] F. Marchetti , M. Dapor, S. Girardi, F. Giacomozzi, and A. Cavalleri, "Physical properties of TiN films," Materials Science and Engineering, Vol. A115, pp. 217-221, 1989.
[51] C. C. Liu, W. T.Wang, M. P. Houng, Y. H. Wang, S. M. Chen, “Titanium Nitride as Spreading Layers for AlGaInP Visible LEDs,” IEEE Photonics Technology Letters, Vol. 14, pp. 1665-1667, 2002.
[52] M. Kiuchi, A. Chayahara, M. Tarutani, Y. Takai, and R. Shimizu, “The microstructure of transparent and electrically conducting titanium nitride films,” Materials Chemistry and Physics, Vol. 54, pp. 330-333, 1998.
[53] H. Joswing and W. pamler, “ Stoichiometry effects in TiN diffusion barriers,” Thin Solid Films, Vol. 221, p.228, 1992.
[54] J. W. Coburn and H. F. Winters, “ Plasma etching-A discussion of mechanisms,” J. Vacuum Science and Technology, Vol.16, p. 391,1979
[55] A. Tarniowy, R. Mania, and M. Rekas, “The effect of thermal treatment on the structure, optical and electrical properties of amorphous titanium nitride thin films,” Thin Solid Films, Vol. 311, pp. 93-100, 1997.
[56] T. S. Chang, W. C. Wang, and F. S. Huang, “The study of diffusion barrier TiN in Cu/TiN/TiSi2/Si contact system”, VLSI Technology, Systems, and Applications, 1995. Proceedings of Technical Papers. 1995 International Symposium on, pp. 185 –189, 1995.
[57] M. Asano, M. Kobayyashi, Y. Maeno, K. Oishi, and K. Kawamura, “Magneto-Optical Recording Media with new Protective Films,” IEEE Trans. on Magnetics, Vol. 23, pp. 2620-2622, 1987.
[58] J. K. Ho, C. S. Jong, C. N. Huang, and K. K. Shih, “Low-resistance ohmic contacts to p-type GaN achieved by the oxidation of Ni/Au films,” J. Appl. Phys., Vol. 86., pp. 4491-4493, 1999.
[59] W. S. Wong, T. Sands, N. W. Cheung, M. Kneissl, D. P. Bour, P. Mei, L.T. Romano, and N. M. Johson, “InxGa1-xN light emitting diodes on Si substrates fabricated by Pd-in metal bonding and laser lift-off,” Appl. Phys. Lett., Vol. 77, pp.2822-2824, 2000.
[60] Hyunsoo Kim, Ji-Myon Lee, Chul Huh, Sang-Woo Kim, Dong-Joon Kim, Seong-Ju Park, and Hyunsang Hwanga, “Modeling of a GaN-based light-emitting diode for uniform current spreading,” Appl. Phys. Lett., Vol. 77, pp.1903-1905, 2000.
[61] X. Guo and E. F. Schuberta, “Current crowding in InGaN light emitting diodes on insulating substrates,” J. Appl. Phys., Vol. 90, pp. 4192-4195, 2001
[62] I. Schnitzer and E. Yablonovitch, C. Caneau, T. J. Gmitter, and A. Schere, “30% external quantum efficiency from surface textured, thin-film light-emitting diodes,” Appl. Phys. Lett., Vol. 63, No. 16, pp. 2174-2176, 1993.
[63] I. Waki, H. Fujioka, and M. Oshima, “Low-temperature activation of Mg-doped GaN using Ni films,” Appl. Phys. Lett., Vol. 78, pp. 2889-2891, 2001.
[64] Y. Kamii, I. Waki, H. Fujioka, M. Oshima, H. Miki, and M. Okuyama, “Electrical characteristics of Mg-doped GaN activated with Ni catalysts,” Applied Surface Science, Vol. 190, pp. 348–352, 2002.
[65] I. Waki, H. Fujioka, M. Oshima, H. Miki and A. Fukizawa, “ Low-temperature activation of Mg-doped GaN using Ni films,” Appl. Phys. Lett., Vol. 78, p. 2899, 2001.
[66] H. Kim, S. J. Park, and H. Hwang, “ Design and fabrication of highly efficient GaN-based light-emitting diodes,” IEEE Trans. on Electron Devices, Vol. 49, pp. 1715-1722, 2002.
[67] D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, p. S. Martin, and S. L. Rudaz, “ Illumination with solid state lighting technology,” IEEE Journal on Selected Topics in Quantum Electronics, Vol. 8, pp. 310-320, 2002
[68] J. J. Wierer, D. A. Steigerwald, and M. R. Krames, “High-power AlGaInN filp-chip light-emitting diodes,” Appl. Phys. Lett., Vol. 78, p. 3379, 2001.
[69] “LumiLeds lighting launches multi-format luxeon light sources,” Compound Semiconductor Mag., vol. 7, p. 11, 2001.
[70] W. Goetz, F. Ahmed, J. Bhat, L. Cook, N. F. Gardner, E. Johnson, M. Misra, R. S. Kern, A. Y. Kim, J. Kim, J. Kobayashi, M. R. Krames, M. Ludowise, P. S. Martin, T. Mihopoulos, A Munkholm, S. Rudaz, S. Salim, Y. C. Chen, D. A. Steigerwald, S. A. Stockman, J. Sun, J. J. Wierer, D. Vanderwater, F. M. Steranka, and M. G. Craford, “ Power III-nitride LEDs, ” in International Conf. Nitride Semiconductors, Denver, Co, July 2001.
[71] Y. K. Lin, M. P. Houng, and Y. H. wang, “Characterization of flip-chip laser diode bonding on silicon by using indium solder,” Thesis of E.E., NCKU, Tainan, Taiwan, 2001.
[72] C. C. Liu, Y. K. Lin, M. P. Houng, and Y. H. wang, “The microstructure investigate of flip-chip laser diode bonding on silicon substrate by using indium-gold solder,” IEEE Trans. on Components and Packaging Technologies, Vol. 26, No. 3, pp. 635-641, 2003.
[73] C. C. Liu, Y. K. Lin, M. P. Houng, and Y. H. wang, “The interface microstructure on the reliability of flip-chip laser diode bonding,” IEEE 2002 Int’l Symposium on Electronic Material and Packaging, pp. 438-444, 2002.
[74] Paul S. Martin, J. Bhat, C. H. Chen, D. Collins, W. Goetz, R. Khare, A. Kim, M. Krames, C. Lowery, M. Ludowise, G. Mueller- Mach, S. Subramany, S. C. Tan, J. Thompson, T. Trottier, S. –C., and R. Khare, “ High power white LED technology for solid state lighting,” in Proc. SPIE, San Diego, CA, July 2001.
[75] Q. Tan, and Y. C. Lee "Solder technology for optoelectronic packaging," IEEE Electronic Components and Technology Conference, pp. 28-36, 1998.
[76] W. S. Wong, M. Kneissl, P. Mei, D. W. Treat, and Mark Teepe,“ Continuous-wave InGaN multiple-quantum-well laser diodes on copper substrates,” Appl. Phys. Lett., Vol. 78, pp. 1198-1120, 2001.
[77] Barwolff, J. W. Tomm, R. Muller, S. Weiβand H.Oppermann, and H. Reich, “Spectroscopic measurement of mount-induced strain in optoelectronic devices,” IEEE Trans. on Advanced Packaging, Vol. 23, pp. 170-175, 2000.
[78] W. W. So and C. C. Lee, “High temperature joint manufactured at low temperatures,” IEEE Electronic Components and Technology Conference, pp. 284-291, 1998.
[79] R. R. Varma and P. Parayanthal, “Bonding induced stress in semiconductor laser,” Electronic components and Technology Conference, Proceeding, pp. 482-484, 1993.
[80] K. Shimizu, T. Nakanishi, K. Karasawa, K. Hashimoto, and K. Niwa, “Solder joint reliability of In-alloy interconnection,” J. Electron. Mater., Vol. 24, pp. 39-45, 1995.
[81] F. G. Yost, “Soldering to gold films,” Gold Bull, Vol. 10, pp. 94-100, 1997.
[82] D. M. Jacobson and G. Humpston, “Gold coatings for fluxless soldering,” Gold Bull, Vol. 22, pp. 9-18, 1989.
[83] M. P. Houng, Y. H. Wang, C. J. Huang, and J. H. Horng, “Quality optimization of liquid phase deposition SiO2 film on gallium arsenide,” Solid-state Electronics, Vol. 44, pp. 1917-1923, 2000.
[84] W. W. So and C. C. Lee, “ A fluxless process of producing In-Au joint on copper substrates,” IEEE Electronic Components and Technology Conference, pp 278-283, 1998.
[85] J. BjØntegaard, L. Buene, T. Finstad, O. LØnsjØ, and T. Olsen, “Low temperature interdiffusion in Au/In thin film couples,” Thin Solid Films, Vol. 101, pp. 253-262, 1983.
[86] V. Simic and Z. Marinkovic, “Thin film interdiffusion of Au and In at room temperature,” Thin solid Films, Vol. 41, pp. 57-61, 1977.
[87] G. W. Powelll and J.D. Braun, “Diffusion in the gold-indium system,” Transaction of the Metallurgical Society of AIME, Vol.230, pp. 694-699, 1964.
[88] S. A. Merritt, O. J. S. Heim, S. Cho, and M. Dagenais, “A reliable die attach method for high power semiconductor lasers and optical amplifiers,” Proc 45th Electronic Component of Tech Conf (ECTC), pp. 428-430, 1995.
[89] K. Mizuishi, “Some aspects of bonding-solder deterioration observed in long-lived semiconductor lasers: solder migration and whisker growth,” J. Appl. Phys., Vol. 55, pp. 289-295, 1984.
[90] V. Simic and Z. Marinkovic, “Stability of compounds in thin film metal couples in the course of long ageing at room temperature,” Thin Solid Films, Vol. 209, pp. 181-187,1992.
[91] W. H. Cheng, W. H. Wang, and J. C. Chen, “Defect formation mechanisms in laser welding techniques for semiconductor laser packaging,” IEEE Trans. on Components, Packaging, and Manufacturing Technology, vol. 19, no. 4, pp. 764-769, 1996.
[92] C. C. Lee and G. S. Matijasevi, “Highly reliable die-attachment on polished GaAs surface using gold-tin eutectic alloy,” IEEE Trans. on Components, Packaging, and Manufacturing Technology, Vol. CHMT-12, pp. 406-409, 1989.