研究生: |
郭芳誠 Guo, Fang-Cheng |
---|---|
論文名稱: |
以具有輸入飽和限制預測型卡曼濾波器錯誤偵測為基礎的混沌通訊加密系統 Chaotic Secure Communication System Based on Predictive Kalman Fault Estimator with Input Constraint |
指導教授: |
蔡聖鴻
Tsai, Sheng-Hong Jason |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 65 |
中文關鍵詞: | 混沌系統 、安全通信 、數位再設計 、錯誤檢測和診斷 、線性二次類比追蹤器 、輸入飽和限制 |
外文關鍵詞: | Chaotic systems, Secure communications, Digital redesign, Fault detection and diagnosis, Linear quadratic analog tracker, Input constraint |
相關次數: | 點閱:128 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
混沌系統通常應用於安全通信的加密,但它們可能無法提供高度的安全性。為了改善通訊的安全性,混沌系統需要增加其他的防護信號,但添加其他信號可能導致原始系統發散。本論文,我們重新設計通信架構,使其可以增加額外的安全信號,並使系統不發散。首先介紹了適用狀態空間適應觀測器的誤差判斷/估計及高性能追蹤器,以解決取樣線性時變系統在致動器/系統狀態有未預期到的衰變因素。接著介紹殘值產生的架構和自動調節切換增益機制,使所提出的方法適用於致動器和狀態故障的誤差檢測和診斷(FDD),以達高效能的追蹤目標。本論文也提出一種以進化規劃法為基礎的適應性觀測器應用於安全通信的問題。然而,已知的參考輸入在某些時間瞬間有劇烈的變動,導致某些物理系統的輸入過大以造成輸入飽和,為了克服這個缺點,改良的線性二次類比追蹤器(LQAT)可以在特定時間區間內有效地限制輸入控制力,並且維持可接受的追蹤性能。透過軌跡追踪模擬範例說明了所設計方法的有效性和效率。
Chaotic systems are often applied to encryption on secure communications, but they may not provide a high-degree security. In order to improve the communication of security, chaotic system needs to be add other secure signal, but additional dimensions or signals may cause signals to divergence. In this thesis, we redesign a communication scheme that could create secure signals with additional secure signals, and the scheme could keep system convergence. First, we introduce the universal state-space adaptive observer-based fault diagnosis/estimator and the high-performance tracker for the sampled-data linear time varying system with unanticipated decay factors in actuators/ system states. Second, a residual generation scheme and a mechanism for auto-tuning switched gain is also presented, so that the introduced methodology is applicable for the fault detection and diagnosis (FDD) for actuator and state faults to yield the high tracking performance recovery. The evolutionary programming-based adaptive observer is then applied to the problem of secure communication. However, since the given reference input has serious variation at some time instants, the tracker can easily induces the large input which might not conform to the input constraint of some physical systems. To overcome this disadvantage, the proposed modified linear quadratic analog tracker (LQAT) can effectively restrict the control input within the specified constraint interval, under the acceptable tracking performance. The effectiveness and efficiency of proposed design methodology are illustrated through tracking control simulation examples.
[1]Computer Controlled Systems: Theory and Design(3rd Edition).Pretice-Hall, 1996.
[2]Bodson, M. and Groszkiewicz, J.,“Multivariable adaptive algorithms for reconfigurable flight control,” IEEE Transactions on Control Systems Technology, vol. 5(2), pp. 217-229, 1997.
[3]Caglayan, A. K. and Lancraft, R. E.,“A separated bias identification and state estima-tion algorithm for nonlinear systems,” Automatica, vol. 19(5), pp. 561-570, 1983.
[4]Edwards, C., Spurgeon, S. K., and Patton, R.J., “Sliding mode observers for fault detection and isolation, ” Automatica, vol. 36(4), pp. 541-553, 2000.
[5]Fekih, A., Xu, H., and Chowdhury, F. N., “Neural networks based system identification techniques for model based fault detection of nonlinear systems,” International Journal of Innovative Computing Information and Control, vol. 3(5), pp. 1073-1085, 2007.
[6]Gauthier, J. P. and Kupka, A. K., “Observability and observers for nonlinear systems,” SIAM J. Control Optim, vol. 32(4), pp. 975-994, 1994.
[7]Guo, S. M., Shieh, L. S., Chen, G., and Lin, C. F., “Effective chaotic orbit tracker: a prediction-based digital redesign approach,” IEEE Transaction on Circuits and Systems–I, Fundamental Theory and Application, vol. 47(11), pp. 1557-1570, 2000.
[8]Guo, S. M. and Peng, Z. H., “An observer-based decentralized tracker for sampled-data systems: an evolutionary programming approach,” International Journal of General Systems, vol. 34(4), pp. 421-449, 2005.
[9]Halton, J. H., “On the efficiency of certain quasi-random sequences of points in evaluating multidimensional integrals,” Numerische mathematik, vol. 2(1), pp. 84-90, 1960.
[10]Huang, S. and Tan, K. K, “Fault detection and diagnosis based on modeling and estimation methods,” IEEE Transactions on Neural Networks, vol. 20(5), pp. 872-881, 2009.
[11]Jiang, B., Staroswiecki, M., and Cocquempot, V. “Fault accommodation for nonlinear dynamic systems,” IEEE Transactions on Automatic Control, vol. 51(9), pp. 1578-1583, 2006.
[12]Jiang, T., Khorasani, K., and Tafazol, S., “Parameter estimation-based fault detection, isolation and recovery for nonlinear satellite models,” IEEE Transactions on Control Systems Technology, vol. 16(4), pp. 799-808, 2008.
[13]Luders, G. and Narendra, K., “An adaptive observer and identifier for a linear system,” IEEE Transactions on Automatic Control, vol. 18(5), pp. 496-499, 1973.
[14]Liu, L., Logan, K, Cartes, D., and Srivastava, S., “Fault detection, diagnostics, and prognostics: Software agent solutions,” IEEE Transactions on Vehicular Technology, vol. 56(4), pp. 1613-1622, 2007.
[15]Mayberck, P. S., “Multiple model adaptive algorithms for detecting and compensating sensor and actuator/surface failures in aircraft flight control systems,”International Journal of Robust and Nonlinear Control, vol. 9(14), pp. 1051-1070, 1999.
[16]Rodrigues, M., Theilliol, D., Aberkane, S., and Sauter, D., “Fault tolerant control design for polytopic lpv systems,” International Journal of Applied Mathematics and Computer Science, vol. 17(1), pp. 27-37, 2007.
[17]Rodrigues, M., Theilliol, D., Adam-Medina, M., and Sauter, D., “A fault detection and isolation scheme for industrial systems based on multiple operating models,” Control Engineering Practice, vol. 16(2), pp. 225-239, 2008.
[18]Teixeira, M. C. M. and Zak, S. H.,“Stabilizing controller design for uncertain nonlinear systems using fuzzy models,” IEEE Transaction on Fuzzy System, vol.7(2), pp. 133-142, 1997.
[19]Tsai, J. S. H., Yu, J. M., Canelon, J. I., and Shieh, L.S.,“Extended-Kalman-filter-based chaotic communication,” IMA Journal of Mathematical Control and Information, vol. 22(1), pp. 58-79, 2005.
[20]Tange, X. D., Tao, G., and Joshi, S. M., “Adaptive actuator failure compensation for nonlinear mimo systems with an aircraft control application,” Automatica, vol. 43(11), pp. 1869-1883, 2007.
[21]Tsai, J. S. H., Lin, M. H., Zheng, C. H., Guo, S. M., and Shieh, L. S., “Actuator fault detection and performance recovery with kalman filter-based adaptive observer,” International Journal of General Systems, vol. 36(4), pp. 375-398, 2007.
[22]Tsai, J. S. H., Wei, C. L., Guo, S. M., Shieh, L. S., and Liu, C. R., “Ep-based adaptive tracker with observer and fault estimator for nonlinear time-varying sampled-data systems against actuator failures,” Journal of the Franklin Institute-engineering and Applied Mathematics, vol. 345(5), pp. 508-535, 2008.
[23]Tsai, J. S. H., Du, Y. Y., Zhuang, W. Z., Guo, S. M., Chen, C. W., and Shieh, L. S., “Optimal anti-windup digital redesign of multi-input multi-output control systems under input constraints,” IET Control Theory Applications, vol. 5(21), pp. 447-464, 2011.
[24]Veillette, R., Medanic, J., and Perkins, W., “Design of reliable control systems,” IEEE Transactions on Automatic Control, vol. 37(3), pp. 290-304, 1992.
[25]Wu, N.E., Zhang, Y. M., and Zhou, K. M., “Detection, estimation, and accommodation of loss of control effectiveness,” International Journal of Adaptive Control and Signal Processing, vol. 14(7), pp. 775-795, 2000.
[26]Wei, C. L., Tsai, J. S. H., Guo, S. M., and Shieh, L. S., “Universal predictive Kalman filter-based fault estimator and tracker for sampled-data nonlinear time-varying systems,” IET Control Theory & Applications, vol. 5(1), pp. 203-220,2011.
[27]Zhang, Y. and Jiang, J., “ Integrated active fault-tolerant control using imm approach,” IEEE Transactions on Aerospace and Electronic Systems, vol. 37(4), pp. 1221-1235, 2001.
[28]Zhang, Q., “Adaptive observer for multiple-input-multiple-output (mimo) linear time- varying systems,” IEEE Transactions on Automatic Control, vol. 47(3), pp. 525-529, 2002.
[29]Zhang, X., Parisini, T., and Polycarpou, M., “Adaptive fault-tolerant control of nonlinear uncertain systems: an information-based diagnostic approach,” IEEE Transactions on Automatic Control, vol. 49(8), pp. 1259-1274, 2004.
[30]Zhang, K., Jiang, B., and Shi, P., “A new approach to observer-based fault-tolerant controller design for Takagi-sugeno fuzzy systems with state delay,” Circuits Systems and Signal Processing, vol. 28(5), pp. 679-697, 2009.