| 研究生: |
葉澤群 Yeh, Tse-Chun |
|---|---|
| 論文名稱: |
介電陶瓷材料(1−y)[Mg(1−x)Ni(x)]2(Ti0.95Sn0.05)O4−y(Ca0.8Sr0.2)TiO3之研製及微波特性之探討與應用 Study on Microwave Dielectric Material of (1−y)[Mg(1−x)Ni(x)]2(Ti0.95Sn0.05)O4−y(Ca0.8Sr0.2)TiO3 and Application for Wireless Communication |
| 指導教授: |
李炳鈞
Li, Bing-Jing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 123 |
| 中文關鍵詞: | 介電陶瓷 、濾波器 |
| 外文關鍵詞: | dielectric ceramic, filter |
| 相關次數: | 點閱:1217 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文首先探討(Mg1-xNix)2(Ti0.95Sn0.05)O4(x=0.01~0.09)之微波介電特性,由實驗得知(Mg0.95Ni0.05)2(Ti0.95Sn0.05)O4在燒結溫度為1325℃持溫4小時擁有最佳微波介電特性:εr~14.63、Q×f=392,000 GHz(at 11.42 GHz)、τf~−48.26 ppm/℃。為求τf~0的要求,添加具有正τf的材料(Ca0.8Sr0.2)TiO3(τf~+991 ppm/℃),由實驗得知0.93(Mg0.95Ni0.05)2(Ti0.95Sn0.05)O4−0.07(Ca0.8Sr0.2)TiO3在燒結溫度為1300℃時持溫4小時擁有最佳微波介電特性:εr~18.14,Q×f~162,000 GHz(at 10.19 GHz)而τf~+1.68 ppm/℃。
此外,本論文以FR-4、Al2O3及實驗研製之0.93(Mg0.95Ni0.05)2(Ti0.95Sn0.05)O4−0.07
(Ca0.8Sr0.2)TiO3為基板,製作一個微帶線交錯耦合濾波器,利用Zeland-IE3D電磁模擬軟體並與實作的測量值比較,可獲得縮小濾波器的面積與較好的頻率響應結果。
The microwave properties of (Mg1-xNix)2(Ti0.95Sn0.05)O4(x=0.01~0.09) dielectric ceramic materials are discussed in this paper. The experimental results show that (Mg0.95Ni0.05)2(Ti0.95Sn0.05)O4 sintered at 1325℃ for 4 hours has the best microwave dielectric properties εr~14.63,Q×f~392,000 GHz(at 11.42 GHz) and τf~ −48.26 ppm/℃. In order to adjust negative τf, (Ca0.8Sr0.2)TiO3(τf~+991 ppm/℃) which has positive τf had been add. The experiment result showed that 0.93(Mg0.95Ni0.05)2(Ti0.95Sn0.05)O4−0.07(Ca0.8Sr0.2)TiO3 sintered at 1300℃ for 4 hours has the best microwave dielectric properties εr~18.14,Q×f~162,000 GHz(at 10.19 GHz) and τf~+1.68 ppm/℃。
In addition, a cross-coupled planar microwave filter on FR-4, Al2¬O3 and 0.93
(Mg0.95Ni0.05)2(Ti0.95Sn0.05)O4−0.07(Ca0.8Sr0.2)TiO3 are fabricated. The experimental measurements demonstrate the ceramic 0.93(Mg0.95Ni0.05)2(Ti0.95Sn0.05)O4−
0.07(Ca0.8Sr0.2)TiO3 can be used for microwave applications because of their superior micro properties of low loss, small device area, high value and high relative dielectric constant substrate.
[1]F. Gardiol, Microstrip Cricuits. New York: JOHN WILEY & SONS,INC, 1994.
[2]G. Wolfram and H. E. Göbel, "EXISTENCE RANGE, STRUCTURAL AND DIELECTRIC PROPERTIES OF ZrxTiySnzO4 CERAMICS (x+y+z=2)," Mat. Res. Bull., vol. 16, pp. 1455-1463, 1981.
[3]S. Wu, G. Wang, Y. Zhao, and H. Su, "BaO-TiO2 microwave ceramics," J. Eur. Ceram. Soc., vol. 23, pp. 2565-2568, 2003.
[4]T. J. Kim, H. Y. Lee, and J.-J. Kim, "Microwave Dielectric Properties of (Ba,Sr)O-Sm2O3-TiO2 Ceramics," Ferroelectrics, vol. 333, pp. 259-264, 2006.
[5]M. T. Sebastian., Dielectric Materials for Wireless Communication: Elsevier Science, 2008.
[6]A. Belous, O. Ovchar, and D. Durilin, "High-Q Microwave Dielectric Materials Based on the Spinel Mg2TiO4," J. Am. Ceram. Soc., vol. 89, pp. 3441-3445, 2006.
[7]C.-L. Huang and J.-Y. Chen, "Low-Loss Microwave Dielectrics Using Mg2(Ti1-x Snx)O4 (x=0.01-0.09) Solid Solution," J. Am. Ceram. Soc., vol. 92, pp. 2237-2241, 2009.
[8]P. L. Wise, I. M. Reaney, W. E. Lee, T. J. Price, D. M. Iddles, and D. S. Cannell, "Structure-microwave property relations of Ca and Sr titanates," J. Eur. Ceram. Soc., vol. 21, pp. 2629-2632, 2001.
[9]J.-Y. Chen, C.-Y. Jiang, and C.-L. Huang, "Low-loss microwave dielectrics in the Mg2(Ti0.95Sn0.05)O4-(Ca0.8Sr0.2)TiO3 ceramic system," J. Alloys Compd., vol. 502, pp. 324-328, 2010.
[10]C.-L. Huang and C.-E. Ho, "Microwave Dielectric Properties of (Mg1-xNix)2TiO4 (x=0.02-0.1) Ceramics," Int. J. Appl. Ceram. Technol., vol. 7, pp. E163-E169, 2010.
[11]魏炯權, 電子材料工程: 全華圖書股份有限公司, 2001.
[12]郭展綱, "燒結促進劑對0.9CaWO4-0.1Mg2SiO4介電陶瓷之影響與應用," 碩士論文, 2004.
[13]W. D. Kingery, H. K. Bowen, D. R. Uhlmann, and 陳皇鈞(譯), 陶瓷材料概論. 台北市: 曉園出版社有限公司, 1988.
[14]D. M. Pozar, Microwave engineering, 2nd ed. New York: John Wily & Sons, Inc., 1998.
[15]D. Kajfez, A. W. Glisson, and J. James, "Computed Modal Field Distributions for Isolated Dielectric Resonators," IEEE Trans. Microw. Theory, vol. 32, pp. 1609-1616, 1984.
[16]D. Kajfez, "Basic Principle Give Understanding of Dielectric Waveguides and Resonators," Microwave System News, vol. 13, pp. 152-161, 1983.
[17]D. Kajfez and P. Guillon, Dielectric Resonators. New York: Artech House, 1989.
[18]F. V. Lenel, "Sintering in Presence of a Liquid Phase," Trans. Am. Inst.Mining. Met. Engrs, pp. 878-905, 1948.
[19]V. N. Eremenko, Y. V. Naidich, and I. Aienko, Liquid phase sintering. New York: Consultants Bureau, 1970.
[20]J.-H. Sohn, Y. Inaguma, S.-O. Yoon, M. Itoh, T. Nakamura, S.-J. Yoon, et al., "Microwave Dielectric Characteristics of Ilmenite-TypeTitanates with High Q Values," J. Appl. phys, vol. 33, pp. 5466-5470, 1994.
[21]J. P. Schaffer, A. Saxena, T. H. Sanders, Jr., S. D. Antolovich, and S. B. Warner, The Science and Design of Engineering Materials. Boston: WCB McGraw-Hill, 1999.
[22]肖定全, 陶瓷材料: 新文京開發出版有限公司, 2003.
[23]W. F. Smith, 劉品均(譯), and 施佑蓉(譯), 材料科學與工程, 3 ed.: 高立圖書有限公司, 2005.
[24]J. W. Cahn and R. B. Heady, "Analysis of capillary forces in liquid-phase s-intering of jagged particles," J. Am. Ceram. Soc., vol. 53, pp. 406-409, 1970.
[25]W. J. Huppmann and G. Petzow, The Elementary Mechanisms of Liquid Sintering vol. Sintering Processes: Plenum Press, 1979.
[26]R. M. German, Liquid phase sintering: Plenum Press, 1985.
[27]J. H. Jean and C. H. Lin, "Coarsening of tungsten particles in W-Ni-Fe allo-ys," J. Mater. Sci., vol. 24, pp. 500-504, 1989.
[28]A. Kalendova´, D. Vesely´, and J. Brodinova, "Anticorrosive spinel-type pigments of the mixed metal oxides compared to metal polyphosphates," Anti-Corros. Methods Mater., vol. 51, pp. 6-17, 2004.
[29]C.-L. Huang, J.-Y. Chen, and B.-J. Li, "Effect of CaTiO3 Addition on Microwave Dielectric Properties of Mg2(Ti0.95Sn0.05)O4 Ceramics," J. Alloys Compd., vol. 509, pp. 4247-4251, 2011.
[30]吳朗, 電工材料: 滄海書局, 1998.
[31]余樹楨, 晶體之結構與性質: 渤海堂文化事業有限公司, 2009.
[32]R. L. Geiger, P. E. Allen, and N. R. Strader, VLSI design techniques for analog and digital circuits: McGraw-Hill, 1990.
[33]J. S. Hong and M. J. Lancaster, Microstrip filters for RF/microwave applications: John Wiley & Sons, Inc., 2001.
[34]G. Kompa, Practical microstrip design and applications: Artech House, 2005.
[35]張盛富 and 戴明鳳, 無線通信之射頻被動電路設計: 全華圖書股份有限公司, 1998.
[36]K. C. Gupta, R. Garg, I. Bah, and P. Bhartia, Microstrip Lines and Slotlines, 2 ed.: Artech House 1996.
[37]R. A. Pucel, D. J. Masse, and C. P. Hartwig, "Losses in microstrip," IEEE Trans. Microw. Theory, vol. MTT-16, pp. 342-350, 1968.
[38]E. J. Denlinger, "Losses of microstrip lines," IEEE Trans. Microw. Theory, vol. 28 pp. 513-522, 1980.
[39]G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave filters, impedance matching networks and coupling structures: Artech House, 1980.
[40]B. W. Hakki and P. D. Coleman, "A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter Range," IEEE Trans. Microw. Theory, vol. 8, pp. 402-410, 1960.
[41]W. E. Courtney, "Analysis and Evaluation of a Method of Measuring the Complex Permittivity and Permeability Microwave Insulators," IEEE Trans. Microw. Theory, vol. 18, pp. 476-485, 1970.
[42]P. Wheless and D. Kajfez, "The use of higher resonant modes in measuring the dielectric constant of dielectric resonators," IEEE Trans. Microw. Theory, vol. 85, pp. 473-476, 1985.
[43]Y. Kobayashi and M. Katoh, "Microwave Measurement of Dielectric Properties of Low-Loss Materials by the Dielectric Rod Resonator Method," IEEE Trans. Microw. Theory, vol. 33, pp. 586-592, 1985.