簡易檢索 / 詳目顯示

研究生: 葉澤群
Yeh, Tse-Chun
論文名稱: 介電陶瓷材料(1−y)[Mg(1−x)Ni(x)]2(Ti0.95Sn0.05)O4−y(Ca0.8Sr0.2)TiO3之研製及微波特性之探討與應用
Study on Microwave Dielectric Material of (1−y)[Mg(1−x)Ni(x)]2(Ti0.95Sn0.05)O4−y(Ca0.8Sr0.2)TiO3 and Application for Wireless Communication
指導教授: 李炳鈞
Li, Bing-Jing
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 123
中文關鍵詞: 介電陶瓷濾波器
外文關鍵詞: dielectric ceramic, filter
相關次數: 點閱:1217下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文首先探討(Mg1-xNix)2(Ti0.95Sn0.05)O4(x=0.01~0.09)之微波介電特性,由實驗得知(Mg0.95Ni0.05)2(Ti0.95Sn0.05)O4在燒結溫度為1325℃持溫4小時擁有最佳微波介電特性:εr~14.63、Q×f=392,000 GHz(at 11.42 GHz)、τf~−48.26 ppm/℃。為求τf~0的要求,添加具有正τf的材料(Ca0.8Sr0.2)TiO3(τf~+991 ppm/℃),由實驗得知0.93(Mg0.95Ni0.05)2(Ti0.95Sn0.05)O4−0.07(Ca0.8Sr0.2)TiO3在燒結溫度為1300℃時持溫4小時擁有最佳微波介電特性:εr~18.14,Q×f~162,000 GHz(at 10.19 GHz)而τf~+1.68 ppm/℃。
    此外,本論文以FR-4、Al2O3及實驗研製之0.93(Mg0.95Ni0.05)2(Ti0.95Sn0.05)O4−0.07
    (Ca0.8Sr0.2)TiO3為基板,製作一個微帶線交錯耦合濾波器,利用Zeland-IE3D電磁模擬軟體並與實作的測量值比較,可獲得縮小濾波器的面積與較好的頻率響應結果。

    The microwave properties of (Mg1-xNix)2(Ti0.95Sn0.05)O4(x=0.01~0.09) dielectric ceramic materials are discussed in this paper. The experimental results show that (Mg0.95Ni0.05)2(Ti0.95Sn0.05)O4 sintered at 1325℃ for 4 hours has the best microwave dielectric properties εr~14.63,Q×f~392,000 GHz(at 11.42 GHz) and τf~ −48.26 ppm/℃. In order to adjust negative τf, (Ca0.8Sr0.2)TiO3(τf~+991 ppm/℃) which has positive τf had been add. The experiment result showed that 0.93(Mg0.95Ni0.05)2(Ti0.95Sn0.05)O4−0.07(Ca0.8Sr0.2)TiO3 sintered at 1300℃ for 4 hours has the best microwave dielectric properties εr~18.14,Q×f~162,000 GHz(at 10.19 GHz) and τf~+1.68 ppm/℃。
    In addition, a cross-coupled planar microwave filter on FR-4, Al2¬O3 and 0.93
    (Mg0.95Ni0.05)2(Ti0.95Sn0.05)O4−0.07(Ca0.8Sr0.2)TiO3 are fabricated. The experimental measurements demonstrate the ceramic 0.93(Mg0.95Ni0.05)2(Ti0.95Sn0.05)O4−
    0.07(Ca0.8Sr0.2)TiO3 can be used for microwave applications because of their superior micro properties of low loss, small device area, high value and high relative dielectric constant substrate.

    摘要..........I Abstract..........II 誌謝..........IV 目錄..........V 表目錄..........IX 圖目錄..........XI 第一章 緒論..........1 1-1. 前言..........1 1-2. 研究目的、方法與應用..........2 第二章 介電陶瓷材料..........5 2-1. 介電陶瓷材料之微波特性..........5 2-1-1. 介電性質..........5 2-1-2. 品質因數..........9 2-1-3. 共振頻率溫度飄移係數..........11 2-2. 介電共振器原理..........12 2-3. 陶瓷材料燒結原理..........16 2-3-1. 陶瓷材料燒結之擴散機制..........16 2-3-2. 陶瓷材料燒結之過程..........17 2-3-3. 陶瓷材料燒結之種類..........18 2-4. 尖晶石之結構..........20 2-5. 鈣鈦礦之結構..........21 第三章 濾波器與微帶線原理..........23 3-1. 濾波器原理..........23 3-1-1. 濾波器簡介..........23 3-1-2. 濾波器之通帶頻段及其頻率響應..........24 3-2. 微帶線原理..........28 3-2-1. 微帶傳輸線簡介..........28 3-2-2. 微帶線之傳輸組態..........28 3-2-3. 微帶線之各項參數公式計算及考量..........29 3-2-4. 微帶線之不連續效應..........31 3-2-5. 微帶線損失..........38 3-3. 微帶線諧振器種類..........39 3-3-1. λ/4短路微帶線共振器..........40 3-3-2. λ/2開路微帶線共振器..........41 3-4. 共振器間之耦合形式..........43 3-4-1. 電場耦合..........43 3-4-2. 磁場耦合..........47 3-4-3. 混合耦合..........50 第四章 實驗程序與量測方法..........54 4-1. 製作原料..........54 4-2. 介電陶瓷材料之製備..........55 4-2-1. 粉末之製備..........57 4-2-2. 陶瓷體之製備..........57 4-2-3. 主體與摻雜材料之混合..........58 4-3. 介電陶瓷材料之量測與分析..........60 4-3-1. XRD晶相鑑定..........60 4-3-2. SEM表面微結構分析、EDS化學成分分析..........61 4-3-3. 密度之量測與計算..........62 4-3-4. 介電特性之量測..........63 4-3-5. 共振頻率溫度係數之量測..........72 4-4. 濾波器之製作與量測..........73 4-4-1. 濾波器製作..........73 4-4-2. 濾波器量測..........74 第五章 實驗結果與討論..........76 5-1. (Mg1−xNix)2(Ti0.95Sn0.05)O4之特性分析與探討..........76 5-1-1. (Mg1-xNix)2(Ti0.95Sn0.05)O4之XRD相鑑定分析..........77 5-1-2. (Mg1-xNix)2(Ti0.95Sn0.05)O4之密度分析..........84 5-1-3. (Mg1-xNix)2(Ti0.95Sn0.05)O4之SEM微結構分析..........87 5-1-4. (Mg1-xNix)2(Ti0.95Sn0.05)O4之微波介電特性分析..........91 5-1-5. (Mg1-xNix)2(Ti0.95Sn0.05)O4之共振頻率溫度飄移係數分析..........93 5-2. (1−y)(Mg0.95Ni0.05)2(Ti0.95Sn0.05)O4−y(Ca0.8Sr0.2)TiO3之特性分析與探討..........94 5-2-1. (1−y)(Mg0.95Ni0.05)2(Ti0.95Sn0.05)O4−y(Ca0.8Sr0.2)TiO3之XRD相鑑定分析..........96 5-2-2. (1−y)(Mg0.95Ni0.05)2(Ti0.95Sn0.05)O4−y(Ca0.8Sr0.2)TiO3之密度分析..........98 5-2-3. (1−y)(Mg0.95Ni0.05)2(Ti0.95Sn0.05)O4−y(Ca0.8Sr0.2)TiO3之SEM微結構分析..........99 5-2-4. (1−y)(Mg0.95Ni0.05)2(Ti0.95Sn0.05)O4−y(Ca0.8Sr0.2)TiO3之微波介電特性分析..........102 5-2-5. (1−y)(Mg0.95Ni0.05)2(Ti0.95Sn0.05)O4−y(Ca0.8Sr0.2)TiO3之共振頻率溫度飄移係數分析..........106 5-3. 濾波器之模擬與實作..........108 5-3-1. FR-4基板之模擬與實作結果..........110 5-3-2. Al2O3基板之模擬與實作結果..........112 5-3-3. 0.93 (Mg0.95Ni0.05)2(Ti0.95Sn0.05)O4−0.07(Ca0.8Sr0.2)TiO3基板之模擬與實作結果..........114 第六章 結論..........118 參考文獻..........121

    [1]F. Gardiol, Microstrip Cricuits. New York: JOHN WILEY & SONS,INC, 1994.
    [2]G. Wolfram and H. E. Göbel, "EXISTENCE RANGE, STRUCTURAL AND DIELECTRIC PROPERTIES OF ZrxTiySnzO4 CERAMICS (x+y+z=2)," Mat. Res. Bull., vol. 16, pp. 1455-1463, 1981.
    [3]S. Wu, G. Wang, Y. Zhao, and H. Su, "BaO-TiO2 microwave ceramics," J. Eur. Ceram. Soc., vol. 23, pp. 2565-2568, 2003.
    [4]T. J. Kim, H. Y. Lee, and J.-J. Kim, "Microwave Dielectric Properties of (Ba,Sr)O-Sm2O3-TiO2 Ceramics," Ferroelectrics, vol. 333, pp. 259-264, 2006.
    [5]M. T. Sebastian., Dielectric Materials for Wireless Communication: Elsevier Science, 2008.
    [6]A. Belous, O. Ovchar, and D. Durilin, "High-Q Microwave Dielectric Materials Based on the Spinel Mg2TiO4," J. Am. Ceram. Soc., vol. 89, pp. 3441-3445, 2006.
    [7]C.-L. Huang and J.-Y. Chen, "Low-Loss Microwave Dielectrics Using Mg2(Ti1-x Snx)O4 (x=0.01-0.09) Solid Solution," J. Am. Ceram. Soc., vol. 92, pp. 2237-2241, 2009.
    [8]P. L. Wise, I. M. Reaney, W. E. Lee, T. J. Price, D. M. Iddles, and D. S. Cannell, "Structure-microwave property relations of Ca and Sr titanates," J. Eur. Ceram. Soc., vol. 21, pp. 2629-2632, 2001.
    [9]J.-Y. Chen, C.-Y. Jiang, and C.-L. Huang, "Low-loss microwave dielectrics in the Mg2(Ti0.95Sn0.05)O4-(Ca0.8Sr0.2)TiO3 ceramic system," J. Alloys Compd., vol. 502, pp. 324-328, 2010.
    [10]C.-L. Huang and C.-E. Ho, "Microwave Dielectric Properties of (Mg1-xNix)2TiO4 (x=0.02-0.1) Ceramics," Int. J. Appl. Ceram. Technol., vol. 7, pp. E163-E169, 2010.
    [11]魏炯權, 電子材料工程: 全華圖書股份有限公司, 2001.
    [12]郭展綱, "燒結促進劑對0.9CaWO4-0.1Mg2SiO4介電陶瓷之影響與應用," 碩士論文, 2004.
    [13]W. D. Kingery, H. K. Bowen, D. R. Uhlmann, and 陳皇鈞(譯), 陶瓷材料概論. 台北市: 曉園出版社有限公司, 1988.
    [14]D. M. Pozar, Microwave engineering, 2nd ed. New York: John Wily & Sons, Inc., 1998.
    [15]D. Kajfez, A. W. Glisson, and J. James, "Computed Modal Field Distributions for Isolated Dielectric Resonators," IEEE Trans. Microw. Theory, vol. 32, pp. 1609-1616, 1984.
    [16]D. Kajfez, "Basic Principle Give Understanding of Dielectric Waveguides and Resonators," Microwave System News, vol. 13, pp. 152-161, 1983.
    [17]D. Kajfez and P. Guillon, Dielectric Resonators. New York: Artech House, 1989.
    [18]F. V. Lenel, "Sintering in Presence of a Liquid Phase," Trans. Am. Inst.Mining. Met. Engrs, pp. 878-905, 1948.
    [19]V. N. Eremenko, Y. V. Naidich, and I. Aienko, Liquid phase sintering. New York: Consultants Bureau, 1970.
    [20]J.-H. Sohn, Y. Inaguma, S.-O. Yoon, M. Itoh, T. Nakamura, S.-J. Yoon, et al., "Microwave Dielectric Characteristics of Ilmenite-TypeTitanates with High Q Values," J. Appl. phys, vol. 33, pp. 5466-5470, 1994.
    [21]J. P. Schaffer, A. Saxena, T. H. Sanders, Jr., S. D. Antolovich, and S. B. Warner, The Science and Design of Engineering Materials. Boston: WCB McGraw-Hill, 1999.
    [22]肖定全, 陶瓷材料: 新文京開發出版有限公司, 2003.
    [23]W. F. Smith, 劉品均(譯), and 施佑蓉(譯), 材料科學與工程, 3 ed.: 高立圖書有限公司, 2005.
    [24]J. W. Cahn and R. B. Heady, "Analysis of capillary forces in liquid-phase s-intering of jagged particles," J. Am. Ceram. Soc., vol. 53, pp. 406-409, 1970.
    [25]W. J. Huppmann and G. Petzow, The Elementary Mechanisms of Liquid Sintering vol. Sintering Processes: Plenum Press, 1979.
    [26]R. M. German, Liquid phase sintering: Plenum Press, 1985.
    [27]J. H. Jean and C. H. Lin, "Coarsening of tungsten particles in W-Ni-Fe allo-ys," J. Mater. Sci., vol. 24, pp. 500-504, 1989.
    [28]A. Kalendova´, D. Vesely´, and J. Brodinova, "Anticorrosive spinel-type pigments of the mixed metal oxides compared to metal polyphosphates," Anti-Corros. Methods Mater., vol. 51, pp. 6-17, 2004.
    [29]C.-L. Huang, J.-Y. Chen, and B.-J. Li, "Effect of CaTiO3 Addition on Microwave Dielectric Properties of Mg2(Ti0.95Sn0.05)O4 Ceramics," J. Alloys Compd., vol. 509, pp. 4247-4251, 2011.
    [30]吳朗, 電工材料: 滄海書局, 1998.
    [31]余樹楨, 晶體之結構與性質: 渤海堂文化事業有限公司, 2009.
    [32]R. L. Geiger, P. E. Allen, and N. R. Strader, VLSI design techniques for analog and digital circuits: McGraw-Hill, 1990.
    [33]J. S. Hong and M. J. Lancaster, Microstrip filters for RF/microwave applications: John Wiley & Sons, Inc., 2001.
    [34]G. Kompa, Practical microstrip design and applications: Artech House, 2005.
    [35]張盛富 and 戴明鳳, 無線通信之射頻被動電路設計: 全華圖書股份有限公司, 1998.
    [36]K. C. Gupta, R. Garg, I. Bah, and P. Bhartia, Microstrip Lines and Slotlines, 2 ed.: Artech House 1996.
    [37]R. A. Pucel, D. J. Masse, and C. P. Hartwig, "Losses in microstrip," IEEE Trans. Microw. Theory, vol. MTT-16, pp. 342-350, 1968.
    [38]E. J. Denlinger, "Losses of microstrip lines," IEEE Trans. Microw. Theory, vol. 28 pp. 513-522, 1980.
    [39]G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave filters, impedance matching networks and coupling structures: Artech House, 1980.
    [40]B. W. Hakki and P. D. Coleman, "A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter Range," IEEE Trans. Microw. Theory, vol. 8, pp. 402-410, 1960.
    [41]W. E. Courtney, "Analysis and Evaluation of a Method of Measuring the Complex Permittivity and Permeability Microwave Insulators," IEEE Trans. Microw. Theory, vol. 18, pp. 476-485, 1970.
    [42]P. Wheless and D. Kajfez, "The use of higher resonant modes in measuring the dielectric constant of dielectric resonators," IEEE Trans. Microw. Theory, vol. 85, pp. 473-476, 1985.
    [43]Y. Kobayashi and M. Katoh, "Microwave Measurement of Dielectric Properties of Low-Loss Materials by the Dielectric Rod Resonator Method," IEEE Trans. Microw. Theory, vol. 33, pp. 586-592, 1985.

    下載圖示 校內:2018-07-31公開
    校外:2018-07-31公開
    QR CODE