| 研究生: |
張哲源 Chang, Che-Yuan |
|---|---|
| 論文名稱: |
以尿素-硝酸鋇沈澱之碳酸鋇披覆於二氧化鈦以合成鈦酸鋇之研究 Synthesis of BaTiO3 via Coating TiO2 with BaCO3 Precipitates from Ba(NO3)2-Urea Solution |
| 指導教授: |
黃啟原
Huang, Chi-Yuen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 97 |
| 中文關鍵詞: | 鈦酸鋇 、尿素 、硝酸鋇 、粉體合成 |
| 外文關鍵詞: | synthesis, coating, core shell, MLCC |
| 相關次數: | 點閱:82 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來鈦酸鋇粉體之合成隨著基層陶瓷電容器 (MLCC) 之蓬勃發展變得愈來愈重要,合成出小粒徑之鈦酸鋇粉體,更是許多研究的目標;以傳統固相反應法合成的粉體,在純度、均勻性及粒徑分佈上皆不如化學法,但在成本考量上,固相反應法仍具有其優勢。因此,本研究乃希望透過改善固相反應法原料混合不均的缺點,以化學法將碳酸鋇披覆在二氧化鈦表面,亦期望因兩者擴散距離的縮短,可於較低的煅燒溫度下,合成出鈦酸鋇粉體。本研究之結果顯示,過量尿素之添加 ([urea]/[cation] ratio = 30) 有助於提高碳酸鋇之生成率;由TEM、FTIR及TEM電子繞射圖譜之結果可知,尿素及硝酸鋇的反應物為碳酸鋇,此外,反應生成之碳酸鋇粒徑極小 (約30 nm) ,並可批覆於二氧化鈦表面。將反應後之粉體於不同煅燒溫度下進行熱處理,最終可在1000oC持溫1小時之煅燒條件下,獲得單一相之鈦酸鋇粉體。藉由XRD及Raman光譜分析之結果,合成出之鈦酸鋇為正方晶相 (tetragonal) 之結晶結構,tetragonality為1.0053。
Barium titanate finds extensive application in the electronic industry, particularly in multilayer ceramic capacitors (MLCCs). The fabrication of very thin (<1 um) dielectric layers applied for the next-generation MLCC will require BaTiO3 with sub-micron or even nano-scale particle. The powder synthesized by conventional solid-state reaction normally has lower barium to titanium homogeneity and usually needs high calcination temperature and strong milling procedure afterwards. That makes the solid-state powder has relative lower purity and wider particle size distribution than that of the chemical-route powders. To improve the homogeneity of barium and titanium in solid-state reaction, urea and Ba(NO3)2 are used as the starting materials, they are expected to react and form the Ba-compound and precipitate onto the TiO2 surface, forming the so called core-shell structure. That will shorten the diffusion distance during calcination and make the formation of BaTiO3 at relatively lower temperature become possible. The experimental results show that the nano scale Ba-compound (~30 nm) can be obtained and effectively coated on TiO2 surface. The TEM, FTIR and TEM diffraction pattern reveal that this Ba-compound is BaCO3. The yield rate of BaCO3 can be up to 97% when the reaction is performed at [urea]/[cation] ratio of 30, under the condition of 90oC/36h. After 1000oC/1h calcination, the single-phase BaTiO3 can be obtained. The Raman spectra and XRD pattern demonstrate that the crystal structure of the obtained BaTiO3 powder is tetragonal phase and the tetragonality is 1.0053.
[1] K. Kishi, Y. Mizuno, and H. Chazono, “Base-Metal Electrode Multilayer Ceramic Capacitors: Past, Present and Future Perspectives,” Jpn. J. Appl. Phys., 42, 1-15, (2003).
[2] G. Arlt, D. Hennings, and G. With, “Dielectric Properties of Fine Grain Barium Titanate Ceramics,” J. Appl. Phys., 58, [4], 1619-1625, 15 August, (1985).
[3] A. J. Moulson and J. M. Herbert, Electroceramics: Materials, Properties, and Applications, Chapman and Hall, New York, (1990).
[4] 李源弘、吳玉祥,鈦酸鋇陶瓷之特性與應用。化工技術、第一卷、第六期、78-92、(1993)。
[5] 工業技術研究院工業材料所,精密陶瓷製成技術與應用。工業材料研究所、(1988)。
[6] F. K. Hennings, B. S. Schreinemacher, and H. Schreinemacher, “Solid-State Preparation of BaTiO3-Base Dielectrics, Using Ultrafine Raw Materials,” J. Am. Ceram. Soc., 84, [12], 2777-2782, (2001).
[7] R. Yanagawa and M. Senna, “Preparation of 200 nm BaTiO3 Particles with their Tertagonality 1.01 via a Solid-State Reaction Preceded by Agglomeration-Free Mechanical Activation,” J. Am. Ceram. Soc., 93, [6], 2335-2341, (2007).
[8] M. T. Buscaglia, M. Bassoli, and V. Buscaglia, “Solid-State Synthesis of Ultrafine BaTiO3 Powders from Nanocrystalline BaCO3 and TiO2,” J. Am. Ceram. Soc., 88, [9], 2374-2379, (2005).
[9] J. Bera and D. Sarkar, “Formation of BaTiO3 from Barium Oxalate and TiO2,” J. Electroceram., 11, 131-137, (2003).
[10] R. N. Viswanath and S. Ramasamy, “Preparation and Ferroelectric Phase Transition Studied of Nanocrystalline BaTiO3,” Nanostruct. Mater., 8, [2], 155-162, (1997).
[11] Z. Novak, Z. Knez, I. Ban, and M. Drofenik, “Synthesis of Barium Titanate Using Supercritical CO2 Drying of Gels,” J. Supercrit. Fluid., 19, 209-215, (2001).
[12] O. A. Harizanov, “Sol-Gel BaTiO¬3 form Peptized Solution,” Mater. Lett., 34, 232-236, (1998).
[13] C. T. Xia, E. W. Shi, W. Z. Zhong, and J. K. Guo, “Preparation of BaTiO3 by Hydrothermal Method,” J. Eur. Ceram. Soc., 15, 1171-1176, (1995).
[14] W. J. Dawson, “Hydrothermal Synthesis of Advanced Ceramic Powder,” Ceram. Bull., 67, [10] , 1673-1678, (1988).
[15] W. Trzebiatowski, J. Wojciechowska, and J. Damm, “Mechanism of Synthesis of Barium Titanate,” Roczniki Chem., 26, 12-33, (1952).
[16] T. Kubo and K. Shinriki, “Chemical Reaction in the Solid State: Ⅲ, Reaction Between BaCO3 and TiO2 in Solid State,” J. Chem. Soc. Jpn., 55, 49-51, (1952).
[17] T. Kubo and K. Shinriki, “Chemical Reaction in the Solid State: Ⅳ, Interface of Moisture and Carbon Dioxide on Formation of Various Barium Titanates,” J. Chem. Soc. Jpn., 55, 137-40, (1952).
[18] L. K. Templeton and J. A. Pask, “Formation of BaTiO3 from BaCO3 and TiO2 in Air and in CO2,” J. Am. Ceram. Soc., 42, 212-216, (1959).
[19] A. Beauger, J. C. Mutin, and J. C. Niepce, “Synthesis Reaction of Metatitanate BaTi03. Part 1 Effect of the Gaseous Atmosphere Upon the Thermal Evolution of the System BaCO3-Ti02,” J. Mater. Sci., 18, 3041-3046, (1983).
[20] A. Amin, M. A. Spears, and B. M. Kulwicki, “Reaction of Anatase and Rutile with Barium Carbonate,” J. Am. Ceram. Soc., 66, [10], 733-738, (1983).
[21] A. Beauger, J. C. Mutin, and J. C. Niepce, “Synthesis Reaction of Metatitanate BaTi03. Part 2 Study of Solid-Solid Reaction Interfaces,” J. Mater. Sci., 18, 3543-3550, (1983).
[22] W. Hertl, “Kinetics of Barium Titanate Synthesis,” J. Am. Ceram. Soc., 71, [10], 879-883, (1988).
[23] J. C. Niepce and G. Thomas, “About the Mechanism of the Solid Way Synthesis of Barium Metatitanate. Industrial consequences,” Solid State Ionics (North-Holland), 43, 69-76, (1990).
[24] 李佩慈,以SnO2-core、( Zr + Ti )-shell技術合成Zr.8Sn.2TiO4的反應機制。國立成功大學資源工程研究所碩士論文、(2003)。
[25] 邱凰倩,以Core-Shell技術合成ZST粉末。國立成功大學資源工程研究所碩士論文、(2005)。
[26] T. A. Ring, Fundamentals of Ceramic Powder Processing and Synthesis, Academic Press, San Diego, (1996).
[27] Y. Zhou, C.Y. Wang, H.J. Liu, Y.R. Zhu, and Z.Y. Chen, “Preparation and Studies of Ag-TiO2 Hybrid Nanoparticles of Core-Shell Structure,” Mater. Sci. Eng., B67, 95-98, (1999).
[28] J. N. Kim, T. S. Byun, and C. S. Kim, “Preparation of Core-Shell BaTiO3 Particles Coated with MgO,” J. Chem. Eng. Jpn., 38, [8], 553-557, (2005).
[29] H. Ichinose, M. Terasaki, and H. Katsuki, “Properties of Peroxotitanium Acid Solution and Peroxo-Modified Anatase Sol Derived From Peroxotitanium Hydrate,” J. Sol-Gel Sci. Techn., 22, [33], (2001).
[30] Y. Gao, Y. Masuda, Z. Peng, T. Yonezawa, and K. Koumoto, “Room Temperature Deposition of a TiO2 Thin Film from Aqueous Peroxotitanate Solution,” J. Mater. Chem., 13, 608-617, (2003).
[31] M. T. Buscaglia, V. Buscaglia, and R. Alessio, “Coating of BaCO3 Crystal with TiO2: Versatile Approach to the Synthesis of BaTiO3 Tetragonal Nanoparticle,” Chem. Mater., 19, 711-718, (2007).
[32] I. Sondi and E. Matijevic, “Homogeneous Precipitation by Enzyme-Catalyzed Reactions. 2. Strontium and Barium Carbonates,” Chem. Mater., 15, 1322-1326, (2003).
[33] F. Boschini, B. Robertz, A. Rulmont, and R. Cloots, “Preparation of Nanosized Barium Zirconate Powder by Thermal Decomposition of Urea in an Aqueous Solution Containing Barium and Zirconium, and by Calcination of the Precipitate,” J. Eur. Ceram. Soc., 23, 3035-3042, (2003).
[34] C. Beddie, C. E. Webster, and M. B. Hall, “Urea Decomposition Facilitated by a Urea Model Complex: a Theoretical Investigation,” Roy. Soc. Chem., 3542-3551, (2005).
[35] F. Caruso, “Nanoengineering of Particle Surface,” Adv. Mater., 13, [1], 11-22, (2001).
[36] W. Lu, M. Quilitz, and H. Schmidt, “Nanoscaled BaTiO3 Powder with a Large Surface Area Synthesized by Precipitation from Aqueous Solution: Prepapation Characterization and Sintering,” J. Eur. Ceram. Soc., 27, [10], 3149-3159, (2006).
[37] C. Ando, R. Yanagawa, H. Chazono, H. Kishi, and M. Senna, “Nuclei Growth Optimization for Fine-grained BaTiO3 by Precision Controlled Mechanical Pretreatment of Starting Powder Mixture,” J. Mater. Res., 19, [12], 3592-3599, (2004).
[38] M. C. B. Lopez, G. Fourlris, B. Rand, and F. Riley, “Characterization of Barinm Titanate Powder: Barium Carbonate Identification,” J. Am. Ceram. Soc., 82, [7], 1777-1786, (1996).
[39] M. El Marssi, F. Le Marrec, I. A. Lukyanchuk, and M. G. Karkut, “Ferroelectric Transition in an Epitaxial Barium Titanate Thin Film: Raman Spectroscopy and X-ray Diffraction Study,” J. Appl. Phys., 94, [5], 3307-3312, (2003).
[40] T. Hoshina, T. Tsurumi, S. Wadaa, and M. Yashima, “Size and Temperature Induced Phase Transition Behaviors of Barium Titanate Nanoparticles,” J. Appl. Phys., 99, 054311-1-054311-8, (2006).
[41] M. Yashima, S. Kobayashi, T. Tsurumi, and S. Wadaa, “Size Effect on the Crystal Structure of Barium Titanate Nanoparticles,” J. Appl. Phys., 98, 014313-1-014313-8, (2005).
[42] C. Y. Huang, Thermal Expansion Behavior of Sodium Zirconium Phosphate Structure type Materials, Ph. D. Thesis, The Pennsylvania State University, U.S.A. (1990).