簡易檢索 / 詳目顯示

研究生: 周佑澄
Chou, Yu-Cheng
論文名稱: 黑色素腫瘤癌細胞於立體培養環境之電特性分析
Electrical Properties of B16F10 Cancer Cells Measured in Three-Dimensional Culture Environment
指導教授: 張凌昇
Jang, Ling-Sheng
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 87
中文關鍵詞: 三維細胞培養三維電極阻抗量測等校電路
外文關鍵詞: three-dimensional (3D) cell culture, three-dimensional (3D) microelectrode, impedance measurement, equivalent circuit model
相關次數: 點閱:161下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 最近幾年生物科技在細胞方面的研究都趨向於使用三維立體環境來培養以及試驗細胞特性,這是因為細胞生長在體內的環境是擁有三維的支架。傳統的二維培養往往無法切確模擬出細胞在體內的生長狀況,使得細胞的生物物理和生物化學受到限制,這些限制往往會影響藥物試驗、再生醫學和基礎科學的研究,進而導致實驗上的精度及可靠度降低。在大多數的研究中都習慣使用合成的水凝膠(膠原凝膠)混合培養液來創造立體支架,以達到立體培養的目的,但大多數三維細胞培養往往都只侷限在影像的觀察及生化試劑的量測,對於細胞在三維培養環境下的電特性的數據十分的匱乏。細胞電特性,如細胞膜電容與細胞質電阻,可提供許多訊息來研究細胞膜與細胞質所發生的變化,且不需複雜的生化檢測。
    細胞阻抗分析被廣泛地應用於監測生物與藥物反應,而本研究利用微影、電鑄技術製備了結合三維電極的三維培養環境,用以培養以及電阻抗量測細胞在三維培養環境下的電特性,在經過十二小時左右的細胞培養,黑色素腫瘤癌細胞也順利地進行分裂,而分裂的電阻抗數據,也將應用在細胞等校電路的探討。

    In recent years, the biological technology of cell culture tends to use three-dimensional environment to culture and test cell properties, because the cells have a three-dimensional scaffold in vivo growth environment. The traditional two-dimensional culture environment which can’t correctly simulate the vivo growth conditions for cells, especially the biophysics and biochemistry are restricted by the traditional two-dimensional culture environment. These restrictions tend to affect the accuracy and the reliability for the drug trial, regenerative medicine, and the research of basic science. In the most researches, they were accustomed to using the synthetic hydrogels (collagen gel) which mixes with medium to create three-dimensional scaffold, that can reach the purpose of three-dimension (3D) cell culture. But the most of the biological technology usually restricted in the image observation and measurement of biochemical reagents, the electrical properties of cell culture in three-dimensional environment were very scarce. The membrane capacitance (Cc) and cytoplasm resistance (Rc) can provide the information required to investigate changes in the membrane and cytoplasm without the need for complex chemical biochemical detection.
    Cell impedance analysis is widely used for monitoring biological and medical reactions. In this study, the three-dimenional (3D) microelectrodes combined with the three-dimensional (3D) culture environment were fabricated for Electrical Properties of B_16 F_10 using electroforming and lithography technology. After about twelve hours cultured, the B_16 F_10 cancer cells successfully divided in three-dimensional (3D) microelectrodes. The data of cell-division were explored in the equivalent circuit of the cell.

    摘要……………………………………………………………………………........I ABSTRACT………………………………………………………………………….II ACKNOWLEDGEMENT……………………………………………………….IV CONTENT…………………………………………………………………………..VI LIST OF TABLES………………………………………………………………...VIII LIST OF FIGURES……………………………………………………………...…IX CHAPTER 1 INTRODUCTION……………………………………………………1 1-1 Background and Motivation…………………………………………………..1 1-1-1 Background……………..………………………………………………….1 1-1-2 Motivation..…………………………………………………………………2 1-2 Organization of thesis…..……………………………………….4 CHAPTER 2 MATERIAL AND METHOD……………………………………..6 2-1 Cell lines……………………….………………………………………..…6 2-2 Chip fabrication………………………………….………………………..7 2-2-1 Sensor design……………………………………………………………9 2-2-2 Design of electrode array…………………….……………………....15 2-2-3 Material and technology……………………………………………….20 2-2-4 Introduction to microelectrode…………………………………………...30 2-3 Combine chip with chamber………………………………………………..42 CHAPTER 3 EXPERIMENT SET UP AND MEASUREMENT RESULT…46 3-1 Experiment set up….……...…………………………………………...46 3-1-1 Impedance measurement system…………….…………………46 3-1-2 Calibration………….….……………….……………………...…50 3-1-3 Experiment set up………….….………………………………...52 3-2 Experiment test and measurement result……………………………..…54 3-2-1 Experiment text…………..……………………………………..54 3-2-2 Single cell trapping and impedance measurement………..56 3-2-3 Cell culture and impedance measurement for cell division………60 CHAPTER 4 RESULTS AND DISCUSSIONS………………….……………….66 4-1 Single-cell capture difference effect on impedance magnitude………………66 4-2 Cell-division difference effect on impedance magnitude…………………….67 4-2-1 Equivalent circuit model of Dulbecco’s Modified Eagle’s Medium…..67 4-2-2 Equivalent circuit model of single-cell………………………..……...70 4-2-3 Equivalent circuit model of cell-division……………………………76 CHAPTER 5 CONCLUSIONS AND FUTURE WORK…………….………..….81 Reference…………………………………………………………………….83

    [1] Cancer,
    http://www.who.int/mediacentre/factsheets/fs297/en/
    [2] K. C. Lan, L. S. Jang, “Integration of single-cell
    trapping and impedance measurement utilizing micro-
    well electrodes,” Biosensors and Bioelectronics, vol.
    26, pp. 2025–2031, 2011
    [3] L. S . Jang, M. H. Wang, “Microfluidic device for
    cell capture and impedance measurement,” Biomed
    Microdevices, vol. 9, pp. 737–743, 2007
    [4] D. Mondal, C. R. Chaudhuri, L. Das, J. Chatterjee,
    “Microtrap electrode devices for single cell trapping
    and impedance measurement,” Biomed Microdevices, vol.
    14, pp. 955–964, 2012
    [5] P. Shah, X. Zhu, C. Chen, Y. Hu, C. Z. Li, “Lab-on-
    chip device for single cell trapping and analysis,”
    Biomed Microdevices, vol. 16, pp. 35–41, 2014
    [6] Z. Guan, S. Jia, Z. Zhu, M. Zhang, C. J. Yang,
    “Facile and Rapid Generation of Large-Scale
    Microcollagen Gel Array for Long-Term Single-Cell 3D
    Culture and Cell Proliferation Heterogeneity
    Analysis,” American Chemical Society, vol. 86, pp.
    2789−2797, 2014
    [7] D. D. Carlo, L. Y. Wu, L. P. Lee, “Dynamic single
    cell culture array,” Lab Chip, vol. 6,
    pp. 1445-1449, 2006
    [8] K. M. Mabry, S. Z. Payne, K. S. Anseth, “Microarray
    analyses to quantify advantages of 2D and 3D hydrogel
    culture systems in maintaining the native valvular
    interstitial cell phenotype,” Biomaterials, vol. 74,
    pp. 31-41, 2016
    [9] 黑色素腫瘤癌細胞,
    https://www1.cgmh.org.tw/intr/intr4/c8380/contents/defau lt_3_2.htm#top
    [10] A. M. Greiner, B. Richter, M. Bastmeyer, “Micro-
    Engineered 3D Scaffolds for Cell Culture Studies,”
    Macromol. Biosci., vol. 12, pp. 1301–1314, 2012
    [11] Z. Guan, S. Jia, Z. Zhu, M. Zhang, C. J. Yang,
    “Facile and Rapid Generation of
    Large-Scale Microcollagen Gel Array for Long-Term
    Single-Cell 3D Culture and Cell Proliferation
    Heterogeneity Analysis,” Anal. Chem., vol. 86,
    pp.2789-2797, 2014
    [12] T. A. Nguyen, T. I. Yin, G. U. Imtek, “A cell
    impedance sensor chip for cancer cells detection
    with single cell resolution,” IEEE, vol. 13, pp. 1-
    4, 2013
    [13] J. Mamouni, L. Yang, “Interdigitated microelectrode-
    based microchip for electrical impedance
    spectroscopic study of oral cancer cells,” Biomed
    Microdevices, vol. 13, pp. 1075–1088, 2011
    [14] K. F. Lei1, M. H. Wu, C. W. Hsu, Y. D. Chen,
    “Electrical Impedance Determination of Cancer Cell
    Viability in a 3-Dimensional Cell Culture
    Microfluidic Chip,” Int. J. Electrochem. Sci., vol.
    7, pp. 12817 – 12828, 2012
    [15] COMSOL MULTIPHYSICS, http://www.comsol.com/
    [16] SU-8 Permanent Photoresists,
    http://www.microchem.com/pdf/SU-8-table-of-
    properties.pdf
    [17] K. V. Christ, K. B. Williamson, K. S. Masters, K. T.
    Turner, “Measurement of
    single-cell adhesion strength using a microfluidic
    assay,” Biomed Microdevices, vol. 12, pp. 443–455,
    2010
    [18] A. M. Skelley, O. Kirak, H. Suh, R. Jaenisch, J.
    Voldman, “Microfluidic control of cell pairing and
    fusion,” NATURE METHODS, vol. 6, pp. 147-152, 2009
    [19] S. Inoue, M. Imamura, Y. Hirano, Y. Tabata,
    “Adhesion and Proliferation of Human Adipo-Stromal
    Cells for Two- or Three-Dimensional Poly(ethylene
    terephthalate) Substrates with or without RGD
    Immobilization,” Journal of Biomaterials Science,
    vol. 20, pp. 721–736, 2009
    [20] AZ-P4000 Thick Film Photoresist,
    http://www.microchemicals.com/micro/AZ%20P4000%20Phototr esist.pdf
    [21] 〖NANO〗^TW SU-8 Negative Tone Photoresist
    Formulations 2-25,
    http://www.microchem.com/pdf/SU8_2-25.pdf
    [22] M. Schlesinger, M. Paunovic, Modern Electroplating
    (5th edition), New Jersey: John Wiley & Sons, Inc.,
    2010
    [23] 田福助, 電化學: 理論與應用, 臺北巿: 高立出版, 新科技總經
    銷, 1987
    [24] D. Zhu, Y. B. Zeng, “Micro electroforming of high-
    aspect-ratio metallic microstructures by using a
    movable mask,” Manufacturing Technology, vol. 57,
    pp. 227–230, 2008
    [25] K. Ziolkowskaa, E. Jedrycha, R. Kwapiszewskia, J.
    Lopacinskaa, M. Skolimowskib, M. Chudya, “PDMS/glass
    microfluidic cell culture system for cytotoxicity
    tests and cells passage,” Sensors and Actuators B,
    vol. 145, pp. 533–542, 2010
    [26] 林維哲, “Miniaturized Cell Culture System,”國立成功大
    學電機工程學系碩士論文, 民國103年
    [27] Poly-L-lysine,
    http://www.sigmaaldrich.com/technical-
    documents/articles/biofiles/poly-lysine.html
    [28] J. W. Wang, M. H. Wang, L. S. Jang, “Effects of
    electrode geometry and cell location on single-cell
    impedance measurement,” Biosensors and
    Bioelectronics, vol. 25, pp. 1271–1276, 2010
    [29] J. L. Honga, K. C. Lanb, L. S. Jang, “Electrical
    characteristics analysis of various cancer cells
    using a microfluidic device based on single-cell
    impedance measurement,” Sensors and Actuators, vol.
    173, pp. 927– 934, 2012
    [30] S. L. Tsai, M. H. Wang, M. K. Chen, L. S. Jang,
    “Analytical and Numerical Modeling Methods for
    Electrochemical Impedance Analysis of Single Cells
    on Coplanar Electrodes,” Electroanalysis, vol. 26,
    pp. 389-398, 2014
    [31] M. H. Wang, W. H. Chang, “Effect of Electrode Shape
    on Impedance of Single HeLa Cell: A COMSOL
    Simulation,” BioMed Research International, 2015
    [32] X. Huang, D. Nguyen, D. W. Greve, M. M. Domach,
    “Simulation of Microelectrode Impedance Changes Due
    to Cell Growth,” IEEE SENSORS JOURNAL, vol. 4, pp.
    576-583, 2004
    [33] D. Das, F. A. Kamil, K. Biswas, S. Das, “Evaluation
    of single cell electrical parameters from
    bioimpedance of a cell suspension,” RSC Adv., vol.
    4, pp. 18178–18185, 2014

    無法下載圖示 校內:2021-08-24公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE