| 研究生: |
周佑澄 Chou, Yu-Cheng |
|---|---|
| 論文名稱: |
黑色素腫瘤癌細胞於立體培養環境之電特性分析 Electrical Properties of B16F10 Cancer Cells Measured in Three-Dimensional Culture Environment |
| 指導教授: |
張凌昇
Jang, Ling-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 三維細胞培養 、三維電極 、阻抗量測 、等校電路 |
| 外文關鍵詞: | three-dimensional (3D) cell culture, three-dimensional (3D) microelectrode, impedance measurement, equivalent circuit model |
| 相關次數: | 點閱:161 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
最近幾年生物科技在細胞方面的研究都趨向於使用三維立體環境來培養以及試驗細胞特性,這是因為細胞生長在體內的環境是擁有三維的支架。傳統的二維培養往往無法切確模擬出細胞在體內的生長狀況,使得細胞的生物物理和生物化學受到限制,這些限制往往會影響藥物試驗、再生醫學和基礎科學的研究,進而導致實驗上的精度及可靠度降低。在大多數的研究中都習慣使用合成的水凝膠(膠原凝膠)混合培養液來創造立體支架,以達到立體培養的目的,但大多數三維細胞培養往往都只侷限在影像的觀察及生化試劑的量測,對於細胞在三維培養環境下的電特性的數據十分的匱乏。細胞電特性,如細胞膜電容與細胞質電阻,可提供許多訊息來研究細胞膜與細胞質所發生的變化,且不需複雜的生化檢測。
細胞阻抗分析被廣泛地應用於監測生物與藥物反應,而本研究利用微影、電鑄技術製備了結合三維電極的三維培養環境,用以培養以及電阻抗量測細胞在三維培養環境下的電特性,在經過十二小時左右的細胞培養,黑色素腫瘤癌細胞也順利地進行分裂,而分裂的電阻抗數據,也將應用在細胞等校電路的探討。
In recent years, the biological technology of cell culture tends to use three-dimensional environment to culture and test cell properties, because the cells have a three-dimensional scaffold in vivo growth environment. The traditional two-dimensional culture environment which can’t correctly simulate the vivo growth conditions for cells, especially the biophysics and biochemistry are restricted by the traditional two-dimensional culture environment. These restrictions tend to affect the accuracy and the reliability for the drug trial, regenerative medicine, and the research of basic science. In the most researches, they were accustomed to using the synthetic hydrogels (collagen gel) which mixes with medium to create three-dimensional scaffold, that can reach the purpose of three-dimension (3D) cell culture. But the most of the biological technology usually restricted in the image observation and measurement of biochemical reagents, the electrical properties of cell culture in three-dimensional environment were very scarce. The membrane capacitance (Cc) and cytoplasm resistance (Rc) can provide the information required to investigate changes in the membrane and cytoplasm without the need for complex chemical biochemical detection.
Cell impedance analysis is widely used for monitoring biological and medical reactions. In this study, the three-dimenional (3D) microelectrodes combined with the three-dimensional (3D) culture environment were fabricated for Electrical Properties of B_16 F_10 using electroforming and lithography technology. After about twelve hours cultured, the B_16 F_10 cancer cells successfully divided in three-dimensional (3D) microelectrodes. The data of cell-division were explored in the equivalent circuit of the cell.
[1] Cancer,
http://www.who.int/mediacentre/factsheets/fs297/en/
[2] K. C. Lan, L. S. Jang, “Integration of single-cell
trapping and impedance measurement utilizing micro-
well electrodes,” Biosensors and Bioelectronics, vol.
26, pp. 2025–2031, 2011
[3] L. S . Jang, M. H. Wang, “Microfluidic device for
cell capture and impedance measurement,” Biomed
Microdevices, vol. 9, pp. 737–743, 2007
[4] D. Mondal, C. R. Chaudhuri, L. Das, J. Chatterjee,
“Microtrap electrode devices for single cell trapping
and impedance measurement,” Biomed Microdevices, vol.
14, pp. 955–964, 2012
[5] P. Shah, X. Zhu, C. Chen, Y. Hu, C. Z. Li, “Lab-on-
chip device for single cell trapping and analysis,”
Biomed Microdevices, vol. 16, pp. 35–41, 2014
[6] Z. Guan, S. Jia, Z. Zhu, M. Zhang, C. J. Yang,
“Facile and Rapid Generation of Large-Scale
Microcollagen Gel Array for Long-Term Single-Cell 3D
Culture and Cell Proliferation Heterogeneity
Analysis,” American Chemical Society, vol. 86, pp.
2789−2797, 2014
[7] D. D. Carlo, L. Y. Wu, L. P. Lee, “Dynamic single
cell culture array,” Lab Chip, vol. 6,
pp. 1445-1449, 2006
[8] K. M. Mabry, S. Z. Payne, K. S. Anseth, “Microarray
analyses to quantify advantages of 2D and 3D hydrogel
culture systems in maintaining the native valvular
interstitial cell phenotype,” Biomaterials, vol. 74,
pp. 31-41, 2016
[9] 黑色素腫瘤癌細胞,
https://www1.cgmh.org.tw/intr/intr4/c8380/contents/defau lt_3_2.htm#top
[10] A. M. Greiner, B. Richter, M. Bastmeyer, “Micro-
Engineered 3D Scaffolds for Cell Culture Studies,”
Macromol. Biosci., vol. 12, pp. 1301–1314, 2012
[11] Z. Guan, S. Jia, Z. Zhu, M. Zhang, C. J. Yang,
“Facile and Rapid Generation of
Large-Scale Microcollagen Gel Array for Long-Term
Single-Cell 3D Culture and Cell Proliferation
Heterogeneity Analysis,” Anal. Chem., vol. 86,
pp.2789-2797, 2014
[12] T. A. Nguyen, T. I. Yin, G. U. Imtek, “A cell
impedance sensor chip for cancer cells detection
with single cell resolution,” IEEE, vol. 13, pp. 1-
4, 2013
[13] J. Mamouni, L. Yang, “Interdigitated microelectrode-
based microchip for electrical impedance
spectroscopic study of oral cancer cells,” Biomed
Microdevices, vol. 13, pp. 1075–1088, 2011
[14] K. F. Lei1, M. H. Wu, C. W. Hsu, Y. D. Chen,
“Electrical Impedance Determination of Cancer Cell
Viability in a 3-Dimensional Cell Culture
Microfluidic Chip,” Int. J. Electrochem. Sci., vol.
7, pp. 12817 – 12828, 2012
[15] COMSOL MULTIPHYSICS, http://www.comsol.com/
[16] SU-8 Permanent Photoresists,
http://www.microchem.com/pdf/SU-8-table-of-
properties.pdf
[17] K. V. Christ, K. B. Williamson, K. S. Masters, K. T.
Turner, “Measurement of
single-cell adhesion strength using a microfluidic
assay,” Biomed Microdevices, vol. 12, pp. 443–455,
2010
[18] A. M. Skelley, O. Kirak, H. Suh, R. Jaenisch, J.
Voldman, “Microfluidic control of cell pairing and
fusion,” NATURE METHODS, vol. 6, pp. 147-152, 2009
[19] S. Inoue, M. Imamura, Y. Hirano, Y. Tabata,
“Adhesion and Proliferation of Human Adipo-Stromal
Cells for Two- or Three-Dimensional Poly(ethylene
terephthalate) Substrates with or without RGD
Immobilization,” Journal of Biomaterials Science,
vol. 20, pp. 721–736, 2009
[20] AZ-P4000 Thick Film Photoresist,
http://www.microchemicals.com/micro/AZ%20P4000%20Phototr esist.pdf
[21] 〖NANO〗^TW SU-8 Negative Tone Photoresist
Formulations 2-25,
http://www.microchem.com/pdf/SU8_2-25.pdf
[22] M. Schlesinger, M. Paunovic, Modern Electroplating
(5th edition), New Jersey: John Wiley & Sons, Inc.,
2010
[23] 田福助, 電化學: 理論與應用, 臺北巿: 高立出版, 新科技總經
銷, 1987
[24] D. Zhu, Y. B. Zeng, “Micro electroforming of high-
aspect-ratio metallic microstructures by using a
movable mask,” Manufacturing Technology, vol. 57,
pp. 227–230, 2008
[25] K. Ziolkowskaa, E. Jedrycha, R. Kwapiszewskia, J.
Lopacinskaa, M. Skolimowskib, M. Chudya, “PDMS/glass
microfluidic cell culture system for cytotoxicity
tests and cells passage,” Sensors and Actuators B,
vol. 145, pp. 533–542, 2010
[26] 林維哲, “Miniaturized Cell Culture System,”國立成功大
學電機工程學系碩士論文, 民國103年
[27] Poly-L-lysine,
http://www.sigmaaldrich.com/technical-
documents/articles/biofiles/poly-lysine.html
[28] J. W. Wang, M. H. Wang, L. S. Jang, “Effects of
electrode geometry and cell location on single-cell
impedance measurement,” Biosensors and
Bioelectronics, vol. 25, pp. 1271–1276, 2010
[29] J. L. Honga, K. C. Lanb, L. S. Jang, “Electrical
characteristics analysis of various cancer cells
using a microfluidic device based on single-cell
impedance measurement,” Sensors and Actuators, vol.
173, pp. 927– 934, 2012
[30] S. L. Tsai, M. H. Wang, M. K. Chen, L. S. Jang,
“Analytical and Numerical Modeling Methods for
Electrochemical Impedance Analysis of Single Cells
on Coplanar Electrodes,” Electroanalysis, vol. 26,
pp. 389-398, 2014
[31] M. H. Wang, W. H. Chang, “Effect of Electrode Shape
on Impedance of Single HeLa Cell: A COMSOL
Simulation,” BioMed Research International, 2015
[32] X. Huang, D. Nguyen, D. W. Greve, M. M. Domach,
“Simulation of Microelectrode Impedance Changes Due
to Cell Growth,” IEEE SENSORS JOURNAL, vol. 4, pp.
576-583, 2004
[33] D. Das, F. A. Kamil, K. Biswas, S. Das, “Evaluation
of single cell electrical parameters from
bioimpedance of a cell suspension,” RSC Adv., vol.
4, pp. 18178–18185, 2014
校內:2021-08-24公開