簡易檢索 / 詳目顯示

研究生: 范仁俊
Fan, Jen-Chun
論文名稱: 具自動校正寬量測範圍之溫度感測晶片設計
Design of an Automatically Calibrated Temperature Sensing Chip with Wide Input Range
指導教授: 劉濱達
Liu, Bin-Da
共同指導教授: 魏嘉玲
Wei, Chia-Ling
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 81
中文關鍵詞: 溫度感測器零溫度係數寬溫度量測範圍
外文關鍵詞: temperature sensor, wide temperature detect range, zero temperature coefficient
相關次數: 點閱:120下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出了一個寬溫度量測範圍,並具有自動校正功能之時域型溫度感測器。文中提出一個改善傳統溫度感測器量測範圍之電路架構,藉由增加將時間訊號轉為電壓訊號,並增加電壓轉換範圍來實現更廣的溫度量測範圍,由於電晶體在某個閘極電壓下具備零溫度係數的特性,利用此特性來設計一個不隨溫度而改變的電流源,以用於時間寬度延長電路。
    此設計以台灣積體電路製造公司 0.18 μm 一層多晶矽六層金屬導線CMOS製程來實現,電路經由佈局模擬顯示可量測範圍為 −30℃ 到130℃ ,溫度解析度0.02℃,電路採樣頻率為1.4 MHz,每次採樣所消耗的能量為2.31 nJ,而溫度誤差僅±1.3。

    A time-domain temperature sensor with automatically calibrated for wlde temperature detection range is presented in this thesis. A structure that can improve the temperature detection range of traditional temperature sensor is proposed. To achieve a wider temperature detection range, the operating voltage range of time-to-voltage converter is improved. And a temperature-independent current mirror is designed by the ZTC characteristic of component at the specific gate voltage for the pulse width extending circuit.
    The proposed design is implemented in TSMC 0.18-μm 1P6M CMOS technology. The performance of this circuit which is simulated through post-layout shows that the temperature detection range is from −30℃ to 130℃, and the resolution is up to 0.002℃. The sample rate of this design is 1.4 MHz, the energy consumption per sample is 2.31 nJ, and the error after calibration is only ±1.3.

    Abstract (Chinese) i Abstract (English) iii Table of Contents vii List of Figures ix List of Tables xiii Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Organization of the Thesis 3 Chapter 2 Overview of Temperature Sensor 5 2.1 Basic Concepts of Temperature Sensor 5 2.1.1 Voltage domain temperature sensor 5 2.1.2 Time domain temperature sensor 6 2.2 Review of Temperature Sensor Relative Papers 7 2.2.1 PTAT temperature to pulse generator 7 2.2.2 Dual slope time width stretching circuit 10 2.2.3 Time domain temperature sensor using charge pump with SAR ADC 12 Chapter 3 The Architecture of the Proposed Circuit 15 3.1 The Proposed Time Domain Temperature Sensor 15 3.2 Temperature Dependent Delay Line 17 3.3 Adjustment Edge Trigger Circuit 19 3.4 Dual Slope Time Width Generator 21 3.5 Current Mirror 26 3.6 Counter 30 3.6.1 Clock generator 31 3.6.2 Decoder 32 3.7 Dual Slope Phase Detection Circuit 34 Chapter 4 Simulation and Experimental Results 37 4.1 Layout and Simulation Results 37 4.1.1 Layout of the chip 37 4.1.2 Simulation result 39 4.1.3 Variations 49 4.2 Experimental Results 64 4.2.1 Measurement results 64 4.2.2 Discussion 72 4.3 Comparison 74 Chapter 5 Conclusion 75 5.1 Conclusion 75 5.2 Future Work 76 References 77 Biography 81

    [1] R. McGowen, C. Poirier, C. Bostak, J. Ignowski, M. Millican, W. H. Parks, and S. Naffziger, “Power and temperature control on a 90 nm Itanium-family processor,” IEEE J. Solid-State Circuits, vol. 41, no. 1, pp. 229–237, Jan. 2006.
    [2] J. Clabes, J. Friedrich, M. Sweet, J. Dilullo, S. Chu, D. Plass, J. Dawson, P. Muench, L. Powell, M. Floyd, B. Sinharoy, M. Lee, M. Goulet, J. Wagoner, N. Schwartz, S. Runyon, G. Gorman, P. Restle, R. Kalla, J. McGill, and S. Dodson, “Design and implementation of the Power5 microprocessor,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Sept. 2004, pp. 56–57.
    [3] E. Rotem, A. Naveh, M. Moffie, and A. Mendelson, “Analysis of thermal monitor features of the Intel Pentium m processor,” in Proc. Workshop Temperature-Aware Comput. Syst., Jan. 2004, pp. 29–35.
    [4] S. O. Memik, R. Mukherjee, M. Ni, and J. Long, “Optimizing thermal sensor allocation for microprocessors,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 27, no. 3, pp. 516–527, Mar. 2008.
    [5] Y. Li, H. Lakdawala, A. Raychowdhury, G. Taylor, and K. Soumyanath, “A 1.05 V 1.6 mW 0.45 ℃ 3σ-resolution ΔΣ-based temperature sensor with parasitic-resistance compensation in 32 nm CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Dec. 2009, pp. 340–341.
    [6] E. Saneyoshi, K.Nose,M. Kajita, and M. Mizuno, “A 1.1 V 35 μm × 35 μm thermal sensor with supply voltage sensitivity of 2 ℃ /10%-supply for thermal management on the SX-9 supercomputer,” in Proc. IEEE Symp. VLSI Circuits Dig. Tech. Papers, June. 2008, pp. 152–153.
    [7] A. Bakker and J. H. Huijsing, “Micropower CMOS temperature sensor with digital output,” IEEE J. Solid-State Circuits, vol. 31, no.7, pp.933–937, July 1996
    [8] A. Bakker and J. H. Huijsing, “A low-cost high-accuracy CMOS smart temperature sensor,” Proc. IEEE Eur. Solid-State and Circuit Conf., Sept. 1999, pp. 302–305.
    [9] M. A. P. Pertijs, A. Niederkorn, Xu Ma, B. McKillop, A. Bakker, J. Huijsing, “A CMOS temperature sensor with a 3σ inaccuracy of ±0.5 ℃ from –50 ℃ to 120 ℃, ” IEEE J. Solid-State Circuits, vol. 40, no. 2, pp. 454–461, Feb. 2005.
    [10] G. Wang, and G.C.M. Meijer, “The temperature characteristics of bipolar transistors fabricated in CMOS technology,” Sens. Actuators, A, vol. 87, pp.81–89, Dec. 2000.
    [11] A. L. Aita, M. A. P. Pertijs, K. A. A. Makinwa, J. H. Huijsing , and G. C. M. Meijer, “Low-power CMOS smart temperature sensor with a batch-calibrated inaccuracy of ±0.25 °C (±3σ) from −70 °C to 130 °C,” IEEE Sensors J., vol. 13, no. 5, pp. 1840–1848, May 2013.
    [12] P. Chen, C. C. Chen, C. C. Tsai and W. F. Wu, “A time-to-digital-converter-based CMOS smart temperature sensor,” IEEE J. Solid-State Circuits, vol. 40, no. 8, pp. 1642–1648, Aug. 2005.
    [13] C. C. Chen and H. W. Chen, “A low-cost CMOS smart temperature sensor using a thermal-sensing and pulse-shrinking delay line,” IEEE Sensors J., vol. 14, no. 1, pp. 278–284, Jan. 2014.
    [14] C. C. Chung and C. R. Yang, “An autocalibrated all-digital temperature sensor for on-chip thermal monitoring,” IEEE Trans. Circuits Syst. II Exp. Briefs, vol. 58, no. 2, pp. 105–109, Feb. 2011.
    [15] C. C. Chen, S. H. Lin, Y. Lin, ”Curvature-correction-based time-domain CMOS smart temperature sensor with an inaccuracy of −0.8 °C-1.2 °C after one-point calibration from −40 °C to 120 °C,” Rev. Sci. Instrum., vol. 85, no .6, pp. 065005(1–8), June 2014.
    [16] T. A. Demassa and Z. Ciccone, Digital Integrated Circuits. New York: Wiley, 1996.
    [17] I. M. Filanovsky and A. Allam, “Mutual compensation of mobility and threshold voltage temperature effects with applications in CMOS circuits,” IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., vol. 48, no. 7, pp. 876–884, Jul. 2001.
    [18] I. M. Filanovsky, “Voltage reference using mutual compensation of mobility and threshold voltage temperature effects,” in Proc. Int. Symp. Circuits Syst., vol. 5, May 2000, pp. 197–200.
    [19] P. Chen, C. C. Chen and Y. S. Shen, “A low-cost low-power CMOS time-to-digital converter based on pulse stretching” IEEE Trans. Nucl. Sci., vol. 53, no. 4, pp. 2215–2220, Aug. 2006.
    [20] M. Kim, H. Lee, J. K. Woo, N. Xing, M. O. Kim and S. Kim, “A low-cost and low-power time-to-digital converter using triple-slope time stretching,” IEEE Trans. Circuits Syst. II Exp. Briefs, vol. 58, no. 3, pp. 169–173, Mar. 2011.
    [21] Z. Xu, M. Miyahara and A. Matsuzawa, “A 1 ps-resolution integrator-based time to digital converter using a SAR-ADC in 90 nm CMOS,” Proc. IEEE Int. New Circuits and Syst. Conf., June, 2013, pp. 1–4.
    [22] P. Chen, C. C. Chen, Y. H. Peng, K. M. Wang and Y. S. Wang, “A time-domain SAR smart temperature sensor with curvature compensation and a 3σ inaccuracy of −0.4 ℃ ~ +0.6 ℃ over a 0 ℃ to 90 ℃ range,” IEEE J. Solid-State Circuits, vol. 45, no. 3, pp. 600–609, Mar. 2010.
    [23] Y. Tsividis, Operation and Modeling of the MOS Transistor, 2nd ed. New York: McGraw-Hill, 1999.
    [24] L. Yuan, G. Li, B. He, L. Fan, N. Ning, Q. Yu and M. Yang, “A novel CMOS current reference with low temperature and supply dependence,” in Proc. IEEE Int. conf. Communications, Circuits, and Syst., vol. 4, June 2006, pp. 2201–2204.
    [25] Y. Lu and B. Zhang, “A 1.8-V 0.7 ppm/℃ high order temperature-compensated CMOS current reference,” Analog Integr. Circ. S., vol. 51, no. 3, pp. 175–179, June 2007.
    [26] M. Hua, M. Yu, Y. Ye and J. G. Ma, “A novel current reference with low temperature coefficient in a large temperature range,” in Proc. Int. Conf. Solid-State Integr. Circuit Technology, Oct. 2006, pp. 1730–1732.
    [27] F. Fiori and P. S. Crovetti, “A new compact temperature-compensated CMOS current reference,” IEEE Trans. Circuits Syst. II Exp. Briefs, vol. 52, no. 11, pp. 724–728, Nov. 2005.
    [28] S. Chang, G. Wang and Q. Huang, “A novel MOSFET-only current reference with multiple temperature compensations,” in Proc. Int. Conf. Arabic Islamic Studies, Oct. 2007, pp. 506–509.
    [29] Y.S. Lin, D. Sylvester, and D. Blaauw, “An ultra low power 1 V, 220 nW temperature sensor for passive wireless applications,” in Proc. IEEE Custom Integr. Circuits Conf., Sept. 2008, pp. 507–510.
    [30] K. Kim, H. Lee, and C. Kim, “366-Ks/s 1.09-nJ 0.0013-mm2 frequency-to-digital converter based CMOS temperature sensor utilizing multiphase clock,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 20, no. 12, pp. 1950–1954, Dec. 2012.

    無法下載圖示 校內:2022-08-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE