簡易檢索 / 詳目顯示

研究生: 賴弘偉
Lai, Hong-Wei
論文名稱: 分區激發感應結構於非接觸式多負載充電平台之研究
Study on Contactless Multi-load Charging Platform with Localized Excitation Inductive Structure
指導教授: 李嘉猷
Lee, Jia-You
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 104
中文關鍵詞: 非接觸式多負載分區激發感應結構充電平台
外文關鍵詞: multi-load, localized excitation induction structure, charging platform, contactless
相關次數: 點閱:69下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在研究非接觸式感應充電系統,並提出一通用型可攜式產品充電平台。此充電平台係由數個Pot型鐵芯分為三組區域,利用感測線圈偵測其次級側感應結構於充電平台上之擺放位置,依據偵測結果開啟充電平台內之對應區域。當平台上置入多組電子負載時,系統設計之電源管理電路,即可針對負載獨立進行充電。系統中利用霍爾元件偵測初級側電感電流,經由單晶片控制電路調整系統操作頻率維持於初級側諧振頻率之上。此外,避免次級側偏移下無法接收足夠能量,利用感測線圈偵測之電壓回授,實現偏移保護機制。次級側感應結構則為一平面感應線圈配合平面型鐵芯建構而成,其整體厚度為2.35mm。最後藉由實測驗證非接觸式感應耦合結構,其於1mm氣隙下之最高電能傳輸效率達63.55%。

    This thesis investigates the charging system based on contactless power transmission techniques for proposes a universal portable product charging platform. This platform is formed with several Pot-cores, and divided into three sections. The position of the secondary side induction structure on the charging platform can be detected by sensing coils, and according to detection result excites the localized charging platform. When several portable products are putted into platform, they can be charge independently by power management circuit. The system uses Hall component to sense primary inductance current, and via microchip control circuit to adjust operation frequency of system maintain on primary resonant frequency in charge platform. The system uses deviated protection structure to avoid receiving insufficient energy when the secondary side is deviated from the primary side. The secondary induction structure is established by planar induction coil and planar core that the thickness is 2.35mm. Experimental results show that the power transmission efficiency of contactless inductive structure is 63.55% under 1mm gap.

    中文摘要 I 英文摘要 II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 XII 第一章 緒論 1 1-1 研究背景與目的 1 1-2 非接觸式感應電能傳輸技術之應用範疇 3 1-3 研究方法與規劃 6 1-4 論文大綱 7 第二章 感應結構之基本特性與原理分析 9 2-1 前言 9 2-2 感應線圈基本原理 9 2-3 感應結構之特性分析 11 2-3-1 磁性材料 11 2-3-2 感應耦合結構之分析與比較 12 2-4 感應結構之高頻損耗分析 18 2-4-1 集膚效應 19 2-4-2 近接效應 21 第三章 感應耦合充電系統分析 23 3-1 前言 23 3-2 變壓器等效模型分析 23 3-3 變壓器之耦合係數 26 3-4 非接觸式感應電能傳輸系統之分析 27 3-5 感應耦合結構 28 3-6 諧振電路設計 32 3-6-1 諧振電路之分析 32 3-6-2 初級側諧振電路之分析 33 3-6-3 次級側諧振電路之分析 35 3-6-4 次級側反射阻抗之分析 37 3-6-5 品質因數 39 3-6-6 實際耦合結構之分析 41 第四章 非接觸式充電平台硬體電路設計 45 4-1 前言 45 4-2 系統之電路架構 45 4-3 感應耦合結構之設計製作 46 4-3-1 初級側感應結構之設計製作 47 4-3-2 次級側感應結構之設計製作 49 4-3-3 整體感應結構之磁場模擬分析 50 4-4 充電平台之驅動電路 52 4-4-1 D類半橋諧振電路 52 4-4-2 半橋驅動電路 55 4-5 閉迴路控制電路 56 4-5-1 單晶片控制電路簡介 56 4-5-2 程式流程圖與接腳圖 57 4-5-3 感側電壓之整流濾波電路 59 4-5-4 充電平台之區域激發機制 61 4-5-5 初級側之切換電容機制 66 4-5-6 驅動頻率變換機制 67 4-5-7多負載下之電源控制 73 4-5-8充電平台之偏移保護機制 75 4-6 次級側電路之設計 76 4-7 次級側結構設計 80 4-8 非接觸式感應充電系統之設計流程 80 第五章 系統模擬與實驗結果 84 5-1 前言 84 5-2 IsSpice模擬 84 5-3 硬體電路製作 86 5-4 實驗結果量測 88 第六章 結論與未來研究方向 98 6-1 結論 98 6-2 未來研究方向 99 參考文獻 100 自傳 104

    [1]Y. Jang and M. M. Jovanovic, “A contactless electrical energy transmission system for portable-telephone battery chargers,” IEEE Trans. Ind. Electron., vol. 50, no. 3, pp. 520-527, 2003.
    [2]B. Choi, J. Nho, H. Cha, T. Ahn, and S. Choi, “Design and implementation of low-profile contactless battery charger using planar printed circuit board windings as energy transfer device,” IEEE Trans. Ind. Electron., vol. 51, no. 1, pp. 140-147, 2004.
    [3]J. Achterberg, E. A. Lomonova, and J. de Boeij, “Coil array structures compared for contactless battery charging platform,” IEEE Trans. Magn., vol. 44, no. 5, pp. 617-622, 2008.
    [4]W. Lim, J. Nho, B. Choi, and T. Ahn, “Low-profile contactless battery charger using planar printed circuit board windings as energy transfer device,” in Proc. IEEE PESC’02, 2002, pp. 579-584.
    [5]張宗文,陣列鐵芯感應結構應用於非接觸式手機充電平台之研究,國立成功大學電機工程學系碩士論文,2007。
    [6]萬泰麟,非接觸式感應充電技術應用於小家電裝置之研究,國立成功大學電機工程學系碩士論文,2007。
    [7]陳嘉緯,非接觸式感應充電杯之研製,國立成功大學電機工程學系碩士論文,2008。
    [8]黃義傑,選擇性感應結構於非接觸式手機充電平台之研究,國立成功大學電機工程學系碩士論文,2008。
    [9]R. Laouamer, M. Brunello, J. P. Ferrieux, O. Normand, and N. BuchheitH, “A multi-resonant converter for non-contact charging with electromagnetic coupling,” in Proc. IEEE IECON’97, 1997, vol. 2, pp. 792-797.
    [10]J. G. Hayes, ‘‘Battery charging systems for electric vehicles,’’ in Proc, IEEE EV’98, 1998, pp. 4/1-4/8.
    [11]R. Radys, J. Hall, J. Hayes, and G. Skutt, “Optimizing AC and DC winding losses in ultra-compact, high-frequency, high-power transformers,” in Proc. IEEE APEC’99, 1999, pp. 14-18.
    [12]SAE Electric Vehicle Inductive Coupling Recommended Practice, SAE J-1773, Draft Feb. 1995.
    [13]G. Wang, W. Liu, M. Sivaprakasam, J. D. Weiland, and M. S. Humayun, “High efficiency wireless power transmission with digitally configurable stimulation voltage for retinal prosthesis,” in Proc. Neural Engineering’05‚ 2005, vol. 16-19, pp. 543 - 546.
    [14]A. Kawamura, G. Kuroda, and C. Zhu, “Experimental results on contact-less power transmission system for the high-speed trains,” in Proc. IEEE PESC’07, 2007, pp. 2779-2784.
    [15]S. Raabe, J. T. Boys, and G. A. Covic, “A high power coaxial inductive power transfer pickup,” in Proc. IEEE PESC’08, 2008, pp. 4320-4325.
    [16]D. Kacprzak, G. A. Covic, and J. T. Boys, “An improved magnetic design for inductively coupled power transfer system pickups,” in Proc. IPEC’05, 2005, vol. 2, pp. 1133-1136.
    [17]J. M. Barnard, J. A. Ferreira, and J. D. Wyk, “Optimising sliding transformers for contactless power transmission systems,” in Proc. IEEE PESC’95, 1995, pp. 245-251.
    [18]杜明育,非接觸式線性感應供電軌道之研究,國立成功大學電機工程學系碩士論文,2007。
    [19]G. A. Covic, G. Elliott, O. H. Stielau, R. M. Green, and J. T. Boys, “The design of a contact-less energy transfer system for a people mover system,” in Proc. PowerCon’00‚ 2000, vol. 1, pp. 79-84.
    [20]D. Spackman, D. Kacprzak, and J. Sykulski, “Magnetic interference in multi-pickup monorail inductively coupled power transfer systems,” Journal of the Japan Society of Applied Electromagnetics and Mechanics, vol.15, no. 3, pp. 238-241, 2006.
    [21]S. C. Tang, S. Y. Hui, and H. S. H. Chung, “Characterization of coreless printed circuit board (PCB) transformers,” IEEE Trans. Power Electron., vol. 15, no. 6, pp. 1275-1282, 2000.
    [22]X. Liu, P. W. Chan, and S. Y. R. Hui, “Finite element simulation of a universal contactless battery charging platform,” in Proc. IEEE APEC’05‚ 2005, vol.3, pp. 1927-1932.
    [23]S. Y. R. Hui and W. W. C. Ho, “A new generation of universal contactless Battery Charging platform for portable Consumer Electronic equipment,” IEEE Trans. Power Electron., vol. 20, no. 3, pp. 620-627, 2005.
    [24]X. Liu and S. Y. Hui, “Equivalent circuit modeling of a multilayer planar winding array structure for use in a universal contactless battery charging platform,” IEEE Trans. Power Electron., vol. 22, no. 1, pp. 21-29, 2007.
    [25]X. Liu and S. Y. Hui, “Simulation study and experimental verification of a universal contactless Battery charging platform with localized charging features,” IEEE Trans. Power Electron., vol. 22, no. 6, pp. 2202-2210, 2007.
    [26]S. Raabe, G. A. J. Elliott, G. A. Covic, and J. T. Boys, “A quadrature pickup for inductive power transfer systems,” in Proc. IEEE ICIEA’07‚ 2007, vol. 23-25, pp. 68-73.
    [27]N. Xi and C. R. Sullivan, “An improved calculation of proximity-effect loss in high-frequency windings of round conductors,” in Proc. IEEE PESC’03, 2003, pp. 853-860.
    [28]C. S. Wang, O. H. Stielau, and G. A. Covic, “Design considerations for a contactless electric vehicle battery charger,” IEEE Trans. Power Electron., vol. 52, no. 5, pp. 1308-1314, 2005.
    [29]O. H. Stielau and G. A. Covic, “Design of loosely coupled inductive power transfer systems,” in Proc. PowerCon’00‚ 2000, vol. 1, pp. 85-90.
    [30]W. Zhou and H. Ma, “Design considerations of compensation topologies in ICPT system,” in Proc. IEEE APEC’07, 2007, pp. 985-990.
    [31]C. S. Wang , O. H. Stielau, and G. A. Covic, “General stability criterions for zero phase angle controlled loosely coupled inductive power transfer systems,” in Proc. IEEE IECON’01, 2001, pp. 1049-1054.
    [32]C. S. Wang, G. A. Covic, and O. H. Stielau, “Power transfer capability and bifurcation phenomena of loosely coupled inductive power transfer systems,” IEEE Trans. Ind. Electron., vol. 51, no. 1, pp. 148-157, 2004.
    [33]X. Liu, W. M. Ng, C. K. Lee, and S. Y. Hui, “Optimal operation of contactless transformers with resonance in secondary circuits,” in Proc. APEC’08‚ 2008, pp. 645-650.
    [34]IR2104 Data Sheet, International Rectifier Inc., 2003.
    [35]趙春棠,PIC單晶片學習祕笈:以PIC16F877為例,全威圖書有限公司,2007。
    [36]PIC16F87XA Data Sheet, Microchip Technology Inc., 2003.
    [37]N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics, 3rd ed., New York: John Wiley & Sons, 2003.
    [38]DAC0808 Data Sheet, National Semiconductor Inc., 1999.
    [39]NE566 Data Sheet, Philips Semiconductor Inc, 1992.
    [40]HCPL3120 Data Sheet, Agileny Technologies Inc, 2005.
    [41]TPS5420 Data Sheet, Texas Instruments Inc, 2006.
    [42]BQ2057C Data Sheet, Texas Instruments Inc, 2002.

    下載圖示 校內:2011-08-18公開
    校外:2011-08-18公開
    QR CODE