| 研究生: |
吳治緯 Wu, Jr-Wei |
|---|---|
| 論文名稱: |
紅樹林疏伐之防洪效益分析-以鹽水溪口為例 Analysis of the impact of mangrove removal on flood control at Yanshui River estuary in Taiwan |
| 指導教授: |
王筱雯
Wang, Hsiao-Wen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 101 |
| 中文關鍵詞: | 紅樹林 、地理資訊系統 、NDVI 、HEC-RAS 2D 、疏伐 |
| 外文關鍵詞: | Mangrove, GIS, NDVI, HEC-RAS 2D, Removal |
| 相關次數: | 點閱:201 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來鹽水溪口河道內持續增生的紅樹林是否造成鹽水溪水位抬升而有河防安全的疑慮,成為在地與相關單位探討之議題。根據民國109年《鹽水溪河川環境管理規劃》,現況鹽水溪下游段在計畫流量下無溢堤風險,但在大雨或颱風時外水位太高以至於內水排水不及還是會導致周遭低窪地區淹水,紅樹林疏伐是否為降低洪災風險之選項,有其深入之必要。
本研究以鹽水溪下游段為研究區域,利用地理資訊系統對多光譜影像進行植生範圍分析,以2011、2012、2016、2019、2021和2022年6次水文條件相似之影像計算植被指數NDVI且進行紅樹林面積判釋,並利用HEC-RAS 2D水理模式設置不同模擬情境,探討紅樹林增生和河防安全間的關聯性,並納入生物調查資料進行討論,以建議合適之疏伐方案。
研究結果顯示,在2011年至2022年間,鹽水溪下游段紅樹林面積由28.58公頃至50.05公頃,增加了75%。隨著紅樹林面積增加,100年重現期流量情況下鹽水溪各斷面水位有抬升之情形。透過本研究之模擬,疏伐紅樹林可以降低洪水位,但各斷面所受影響的紅樹林皆來自不同區域,僅能依照河道各斷面決定紅樹林最佳疏伐位置。本研究建議優先疏伐區為下游段靠近大港觀海橋左右岸的紅樹林,一方面可以有效降低距離堤頂最近的大港觀海橋洪水位,另一方面對於下游段的生物影響相對較小。
In recent years, the continuous growth of the mangrove in the mouth of the Yanshui River has raised concerns about the potential increase in water levels and riverbank safety. This issue has become a topic of discussion among local communities and relevant authorities. According to the 109th year of the "Yanshui River Environmental Management Plan," the downstream section of the Yanshui River does not pose a risk of overflow under planned flow conditions. However, during heavy rain or typhoons, high external water levels combined with inadequate internal drainage can still cause flooding in the surrounding low-lying areas. It is necessary to thoroughly investigate whether mangrove removing could be an option for reducing flood risks.
This study focuses on the downstream section of the Yanshui River. Utilizing geographic information systems, vegetation coverage analysis was conducted on multispectral images from 2011, 2012, 2016, 2019, 2021, and 2022 to calculate the Normalized Difference Vegetation Index (NDVI) and interpret the mangrove area. The HEC-RAS 2D hydraulic model was employed to simulate different scenarios and examine the relationship between mangrove growth and riverbank safety. Biological survey data were also incorporated for further discussion and to propose suitable removing strategies.
The research results indicate that from 2011 to 2022, the mangrove area in the downstream section of the Yanshui River increased from 28.58 hectares to 50.05 hectares, marking a 75% growth. As the mangrove area expanded, water levels at various cross-sections of the Yanshui River under the 100-year return period flow showed an upward trend. Through simulations conducted in this study, it was found that removing the mangrove can help lower flood levels. However, different sections are affected by mangrove from various areas, so the optimal removing locations should be determined based on each section of the river. The study suggests prioritizing removing in the downstream section near the left and right banks of the Da Gang Guan Hai Bridge. This approach can effectively reduce flood levels near the bridge and have relatively minor impacts on the downstream biota.
1. Akan, A. O., & Iyer, S. S. (2021). Open channel hydraulics. Butterworth-Heinemann.
2. Alongi, D. M. (1988). Bacterial productivity and microbial biomass in tropical mangrove sediments. Microbial ecology, 15(1), 59-79.
3. Alongi, D. M. (2002). Present state and future of the world's mangrove forests. Environmental conservation, 29(3), 331-349.
4. Alongi, D. M. (2014). Carbon cycling and storage in mangrove forests. Annual review of marine science, 6(1), 195-219.
5. Amoros, C., Bornette, G., & Henry, C. P. (2000). A vegetation-based method for ecological diagnosis of riverine wetlands. Environmental Management, 25(2).
6. Auladi, I. R. (2013). Mangrove conservation: Reconstructing formal, informal and non-formal environmental education in order to foster the development of a creative economy in Indonesia. International Journal of Green Economics, 7(1), 71-85.
7. Barbier, E. B., Hacker, S. D., Kennedy, C., Koch, E. W., Stier, A. C., & Silliman, B. R. (2011). The value of estuarine and coastal ecosystem services. Ecological monographs, 81(2), 169-193.
8. Bastiaanssen, W. G., Molden, D. J., & Makin, I. W. (2000). Remote sensing for irrigated agriculture: examples from research and possible applications. Agricultural water management, 46(2), 137-155.
9. Bevis, M., Businger, S., Herring, T. A., Rocken, C., Anthes, R. A., & Ware, R. H. (1992). GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system. Journal of Geophysical Research: Atmospheres, 97(D14), 15787-15801.
10. Brunner, G. W. (2016). HEC-RAS river analysis system 2D modeling user’s manual. US Army Corps of Engineers—Hydrologic Engineering Center, 1-171.
11. Bulmer, R., Lewis, M., O’Donnell, E., & Lundquist, C. (2017). Assessing mangrove clearance methods to minimise adverse impacts and maximise the potential to achieve restoration objectives. New Zealand Journal of Marine and Freshwater Research, 51(1), 110-126.
12. Chimner, R. A., Fry, B., Kaneshiro, M. Y., & Cormier, N. (2006). Current Extent and Historical Expansion of Introduced Mangroves on O'ahu, Hawai'i1. Pacific Science, 60(3), 377-383.
13. Chow VT.(1959). Open Channel Hydraulics, McGraw-Hill, New York.
14. Costanza, R., De Groot, R., Sutton, P., Van der Ploeg, S., Anderson, S. J., Kubiszewski, I., Farber, S., & Turner, R. K. (2014). Changes in the global value of ecosystem services. Global environmental change, 26, 152-158.
15. da Cunha Lana, P., & Guiss, C. (1991). Influence of Spartina alterniflora on structure and temporal variability of macrobenthic associations in a tidal flat of Paranaguá Bay (southeastern Brazil). Marine Ecology Progress Series, 73(2-3), 231-244.
16. Darnell, T. M., & Smith, E. H. (2004). Avian use of natural and created salt marsh in Texas, USA. Waterbirds, 27(3), 355-361.
17. Datta, D., Chattopadhyay, R., & Guha, P. (2012). Community based mangrove management: a review on status and sustainability. Journal of environmental management, 107, 84-95.
18. Friess, D. A. (2017). Ecotourism as a tool for mangrove conservation. Sumatra Journal of Disaster, Geography and Geography Education, 1(1), 24-35.
19. Froneman, A., Mangnall, M. J., Little, R. M., & Crowe, T. M. (2001). Waterbird assemblages and associated habitat characteristics of farm ponds in the Western Cape, South Africa. Biodiversity & Conservation, 10(2), 251-270.
20. Ghosh, M. K., Kumar, L., & Roy, C. (2016). Mapping long-term changes in mangrove species composition and distribution in the Sundarbans. Forests, 7(12), 305.
21. Glaser, M. (2003). Interrelations between mangrove ecosystem, local economy and social sustainability in Caeté Estuary, North Brazil. Wetlands Ecology and Management, 11(4), 265-272.
22. Green, K., Kempka, D., & Lackey, L. (1994). Using remote sensing to detect and monitor land-cover and land-use change. Photogrammetric engineering and remote sensing, 60(3), 331-337.
23. Guo, H., Weaver, C., Charles, S. P., Whitt, A., Dastidar, S., D'Odorico, P., Fuentes, J. D., Kominoski, J. S., Armitage, A. R., & Pennings, S. C. (2017). Coastal regime shifts: rapid responses of coastal wetlands to changes in mangrove cover. Ecology, 98(3), 762-772.
24. Hamilton, L. S., & Snedaker, S. C. (1984). Handbook for mangrove area management. Honolulu: East-West Environment and Policy Institute.
25. Heumann, B. W. (2011). Satellite remote sensing of mangrove forests: Recent advances and future opportunities. Progress in Physical Geography, 35(1), 87-108.
26. Huang, S., Tang, L., Hupy, J. P., Wang, Y., & Shao, G. (2021). A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing. Journal of Forestry Research, 32(1), 1-6.
27. Huang, S. C., Shih, S. S., Ho, Y. S., Chen, C. P., & Hsieh, H. L. (2012). Restoration of shorebird‐roosting mudflats by partial removal of estuarine mangroves in northern Taiwan. Restoration Ecology, 20(1), 76-84.
28. James, G. K., Adegoke, J. O., Osagie, S., Ekechukwu, S., Nwilo, P., & Akinyede, J. (2013). Social valuation of mangroves in the Niger Delta region of Nigeria. International Journal of Biodiversity Science, Ecosystem Services & Management, 9(4), 311-323.
29. Kathiresan, K., & Bingham, B. L. (2001). Biology of mangroves and mangrove ecosystems.
30. Kathiresan, K., Manivannan, S., Nabeel, M., & Dhivya, B. (2009). Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Colloids and surfaces B: Biointerfaces, 71(1), 133-137.
31. Kathiresan, K., & Rajendran, N. (2005). Coastal mangrove forests mitigated tsunami. Estuarine, Coastal and shelf science, 65(3), 601-606.
32. Kelleway, J. J., Cavanaugh, K., Rogers, K., Feller, I. C., Ens, E., Doughty, C., & Saintilan, N. (2017). Review of the ecosystem service implications of mangrove encroachment into salt marshes. Global Change Biology, 23(10), 3967-3983.
33. Kristensen, E., Bouillon, S., Dittmar, T., & Marchand, C. (2008). Organic carbon dynamics in mangrove ecosystems: a review. Aquatic Botany, 89(2), 201-219.
34. Kuenzer, C., Bluemel, A., Gebhardt, S., Quoc, T. V., & Dech, S. (2011). Remote sensing of mangrove ecosystems: A review. Remote Sensing, 3(5), 878-928.
35. Lee, H.-Y., & Shih, S.-S. (2004). Impacts of vegetation changes on the hydraulic and sediment transport characteristics in Guandu mangrove wetland. Ecological Engineering, 23(2), 85-94.
36. Lee, S. (1995). Mangrove outwelling: a review. Hydrobiologia, 295(1), 203-212.
37. Marois, D. E., & Mitsch, W. J. (2015). Coastal protection from tsunamis and cyclones provided by mangrove wetlands–a review. International Journal of Biodiversity Science, Ecosystem Services & Management, 11(1), 71-83.
38. Mulla, D. J. (2013). Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps. Biosystems engineering, 114(4), 358-371.
39. Navalgund, R. R., Jayaraman, V., & Roy, P. (2007). Remote sensing applications: an overview. current science, 1747-1766.
40. Nikora, V., Larned, S., Nikora, N., Debnath, K., Cooper, G., & Reid, M. (2008). Hydraulic resistance due to aquatic vegetation in small streams: field study. Journal of hydraulic Engineering, 134(9), 1326-1332.
41. Othman, M. A. (1994). Value of mangroves in coastal protection. Hydrobiologia, 285(1), 277-282.
42. Ouyang, X., & Guo, F. (2016). Paradigms of mangroves in treatment of anthropogenic wastewater pollution. Science of the Total Environment, 544, 971-979.
43. Park, H. J., Han, E., Lee, Y.-J., & Kang, C.-K. (2016). Trophic linkage of a temperate intertidal macrobenthic food web under opportunistic macroalgal blooms: a stable isotope approach. Marine Pollution Bulletin, 111(1-2), 86-94.
44. Pettorelli, N. (2013). The normalized difference vegetation index. Oxford University Press.
45. Pollen-Bankhead, N., & Simon, A. (2010). Hydrologic and hydraulic effects of riparian root networks on streambank stability: Is mechanical root-reinforcement the whole story? Geomorphology, 116(3-4), 353-362.
46. Prosser, I. P., Dietrich, W. E., & Stevenson, J. (1995). Flow resistance and sediment transport by concentrated overland flow in a grassland valley. Geomorphology, 13(1-4), 71-86.
47. Quirogaa, V. M., Kurea, S., Udoa, K., & Manoa, A. (2016). Application of 2D numerical simulation for the analysis of the February 2014 Bolivian Amazonia flood: Application of the new HEC-RAS version 5. Ribagua, 3(1), 25-33.
48. Rönnbäck, P. (1999). The ecological basis for economic value of seafood production supported by mangrove ecosystems. Ecological economics, 29(2), 235-252.
49. Rogan, J., & Chen, D. (2004). Remote sensing technology for mapping and monitoring land-cover and land-use change. Progress in planning, 61(4), 301-325.
50. Siikamäki, J., Sanchirico, J. N., & Jardine, S. L. (2012). Global economic potential for reducing carbon dioxide emissions from mangrove loss. Proceedings of the National Academy of Sciences, 109(36), 14369-14374.
51. Siple, M. C., & Donahue, M. J. (2013). Invasive mangrove removal and recovery: Food web effects across a chronosequence. Journal of Experimental Marine Biology and Ecology, 448, 128-135.
52. Thakur, S., Maity, D., Mondal, I., Basumatary, G., Ghosh, P. B., Das, P., & De, T. K. (2021). Assessment of changes in land use, land cover, and land surface temperature in the mangrove forest of Sundarbans, northeast coast of India. Environment, Development and Sustainability, 23(2), 1917-1943.
53. Thorp, K., & Tian, L. (2004). A review on remote sensing of weeds in agriculture. Precision Agriculture, 5(5), 477-508.
54. Tomlinson, C. J., Chapman, L., Thornes, J. E., & Baker, C. (2011). Remote sensing land surface temperature for meteorology and climatology: A review. Meteorological Applications, 18(3), 296-306.
55. Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote sensing of Environment, 8(2), 127-150.
56. Valderrama-Landeros, L., Flores-de-Santiago, F., Kovacs, J., & Flores-Verdugo, F. (2018). An assessment of commonly employed satellite-based remote sensors for mapping mangrove species in Mexico using an NDVI-based classification scheme. Environmental monitoring and assessment, 190(1), 1-13.
57. Vo, Q. T., Künzer, C., Vo, Q. M., Moder, F., & Oppelt, N. (2012). Review of valuation methods for mangrove ecosystem services. Ecological indicators, 23, 431-446.
58. Walsh, G. E. (1974). Mangroves: a review. Ecology of halophytes, 51-174.
59. Walters, B. B., Rönnbäck, P., Kovacs, J. M., Crona, B., Hussain, S. A., Badola, R., Primavera, J. H., Barbier, E., & Dahdouh-Guebas, F. (2008). Ethnobiology, socio-economics and management of mangrove forests: A review. Aquatic Botany, 89(2), 220-236.
60. Wang, L., Jia, M., Yin, D., & Tian, J. (2019). A review of remote sensing for mangrove forests: 1956–2018. Remote sensing of Environment, 231, 111223.
61. Weier, J., & Herring, D. (2000). Measuring vegetation (ndvi & evi). NASA Earth Observatory, 20, 2.
62. Wu, F.-C., Shen, H. W., & Chou, Y.-J. (1999). Variation of roughness coefficients for unsubmerged and submerged vegetation. Journal of hydraulic Engineering, 125(9), 934-942.
63. Wu, Q., Li, H.-q., Wang, R.-s., Paulussen, J., He, Y., Wang, M., Wang, B.-h., & Wang, Z. (2006). Monitoring and predicting land use change in Beijing using remote sensing and GIS. Landscape and urban planning, 78(4), 322-333.
64. Xue, J., & Su, B. (2017). Significant remote sensing vegetation indices: A review of developments and applications. Journal of sensors, 2017.
65. Zhang, A., & Jia, G. (2013). Monitoring meteorological drought in semiarid regions using multi-sensor microwave remote sensing data. Remote sensing of Environment, 134, 12-23.
66. 內政部,2017,鹽水溪口重要濕地(國家級)保育利用計畫書。
67. 內政部,2018,香山重要濕地(國家級)保育利用計畫。
68. 內政部,2022,20公尺網格數值地形模型資料。
69. 交通部氣象局,觀測資料查詢,https://eservice.cwb.gov.tw/HistoryDataQuery/index.jsp
70. 沈瑛珊,2021,臺灣北部淡水紅樹林自然保留區時空動態之研究。臺北市立大學地球環境暨生物資源學系環境教育與資源碩士班研究所碩士論文。https://hdl.handle.net/11296/2su239
71. 林幸助,2019,108年度紅樹林生態系調查計畫成果報告書。
72. 施上粟,2005,潮間帶濕地生態水理模式建置及量化之研究。立台灣大學土木工程學研究所博士論文。取至https://hdl.handle.net/11296/k4jrrs
73. 科技部,2022,IPCC氣候變遷第六次評估報告「衝擊、調適與脆弱度」之科學重點摘錄與臺灣氣候變遷衝擊評析更新報告。
74. 高瑞卿、伍淑惠、張元聰,2010,台灣濱海植物圖鑑。
75. 張登凱,2015,香山濕地紅樹林的去留。荒野快報,280期。
76. 陳文樹,2005,紅樹林植物之生態與特性。臺灣林業,九十四年十二月號。
77. 經濟部水利署,2015,鹽水溪及南科相關排水整體治理規劃檢討。
78. 經濟部水利署,2015,鹽水溪治理計畫(含支流那拔林溪)。
79. 經濟部水利署,2020,鹽水溪(含支流?拔林溪)河川環境管理規劃。
80. 經濟部水利署水利規劃試驗所,2007,紅樹林疏伐操作參考手冊。
81. 經濟部水利署,水文資訊網整合服務系統,https://gweb.wra.gov.tw/Hydroinfo/
82. 經濟部水利署,2011,近海水文年報,中華民國一〇〇年臺灣水文年報。
83. 經濟部水利署,2012,近海水文年報,中華民國一〇一年臺灣水文年報。
84. 經濟部水利署,2016,近海水文年報,中華民國一〇五年臺灣水文年報。
85. 經濟部水利署,2019,近海水文年報,中華民國一〇八年臺灣水文年報。
86. 經濟部水利署,2021,近海水文年報,中華民國一一〇年臺灣水文年報。
87. 經濟部水利署,2022,近海水文年報,中華民國一一一年臺灣水文年報。
88. 經濟部水利署第六河川局,2022,111年第二次鹽水溪流域整體改善與調適規劃民間討論會議。
89. 賴奕璇,2017,以遙測影像探討香山溼地紅樹林清除變遷之研究。中華大學休閒遊憩規劃與管理學系研究所碩士論文。取至https://hdl.handle.net/11296/6h7uz7
90. 賴桂文,2016, HEC-RAS水理模式2D模組介紹及應用。
91. 黃大駿、邱郁文、謝國鎔、黃元照,2021,台江國家公園鹽水溪口濕地水域生態資源調查。台江國家公園管理處委託辦理計畫。
92. 薛美莉,1995,消失中的濕地森林-記台灣的紅樹林。行政院農委會特有生物研究保育中心。
93. 蘇語乾,2021,應用 UAV 空拍技術及 HEC-RAS 2D 水理模式於河川高灘地植生管理。國立台灣大學土木工程學研究所碩士論文。取自https://hdl.handle.net/11296/73wp2d