簡易檢索 / 詳目顯示

研究生: 白亦捷
Pai, Yi-Chieh
論文名稱: 使用適應型線性神經元方法於永磁同步馬達驅動器之怠滯效應補償
Dead-time Effect Compensation of PMSM Drive Using Adaptive Linear Neuron Method
指導教授: 鄭銘揚
Cheng, Ming-Yang
共同指導教授: 梁從主
Liang, Tsorng-Juu
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 86
中文關鍵詞: 怠滯時間適應型線性神經元最小均方演算法
外文關鍵詞: short circuit of inverter, nonlinearity compensation, dead-time effects, adaptive-linear-neuron (ADALINE)
相關次數: 點閱:102下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了避免脈寬調變(Pulse Width Modulation, PWM)逆變器的開關元件上臂與下臂同時互補切換過程中,由於開關非理想之特性造成短路(short through)的狀況,會在上下臂開關切換訊號中置入一段延遲時間,也是所謂的怠滯時間(dead-time)。這種方法的主要缺點是可能會發生輸出相電流諧波分量上升與輸出電壓失真。有鑑於此,本論文提出了一種基於適應型線性神經元(Adaptive Linear Neuron, ADALINE)演算法的怠滯效應補償控制策略,使用最小均方演算法來線上估測干擾電壓。本論文所提出的方法有以下幾項優點: 一、不需要電氣參數和相電流極性的資訊; 二、沒有複雜的數學計算及額外的硬體; 三、實現所提出之方法所需的唯一資訊是d軸電流和轉子位置。本論文透過低成本之16位元單晶片dsPIC30F4011實現並驗證所提出方法之可行性。

    One of the commonly used approaches to avoid the short through phenomenon of power devices for pulse-width-modulation (PWM) inverters is to add dead-time into the control signals. The major drawbacks of this kind of approaches include distortion in output phase voltage and rise in harmonics of output phase currents. As a result, this thesis proposes an adaptive-linear-neuron based nonlinearity compensation strategy to cope with the dead-time effects. In particular, by minimizing the feedback d-axis current error, the amplitude of disturbance compensation voltage Vdead is self-tuned using the least mean square algorithm. The dead-time compensation method developed in this thesis has several appealing features: First, it does not need any information about electric parameters and phase current polarity. Second, the proposed approach is also free of complex mathematical computations and additional hardware. Third, only the information of q-axis current and rotor position are essential in implementing the proposed approach. Experimental results indicate that the proposed dead-time compensation approach is feasible.

    中文摘要 III EXTENDED ABSTRACT IV 誌謝 X 目錄 XI 圖目錄 XIV 表目錄 XVIII 第一章 緒論 1 1.1前言 1 1.2研究動機與文獻回顧 2 1.3論文架構 6 第二章 永磁同步馬達驅動介紹 7 2.1永磁無刷馬達驅動方法 7 2.1.1方波電流驅動 7 2.1.2弦波電流驅動 9 2.2磁場導向控制介紹 11 2.2.1座標轉換 11 2.2.2同步旋轉座標下之兩軸數學模型 13 2.3空間向量脈波寬度調變法SVPWM 14 第三章 怠滯效應補償控制方法之說明與實現 23 3.1怠滯效應分析 23 3.2怠滯補償控制技術 31 3.2.1基於脈波誤差之補償方法 31 3.2.2基於觀測器模型之補償方法 36 3.2.3基於電流諧波監測之補償方法 41 第四章 適應型線性神經元之怠滯補償方法 45 4.1基於怠滯效應之干擾電壓數學模型 45 4.2干擾電壓估測原理 48 第五章 實驗平台架構與實驗結果 56 5.1實驗硬體架構介紹 56 5.1.1永磁同步馬達伺服控制實驗平台 56 5.1.2馬達、編碼器及驅動電路硬體規格 58 5.2實驗流程 60 5.3怠滯效應之電流諧波特性分析 62 5.4怠滯補償方法比較 64 5.5不同學習率下之補償成效 70 5.6電流穩態實驗結果與討論 72 5.7電流暫態實驗結果與討論 77 5.8轉矩漣波分析 78 第六章 結論與未來研究建議 80 6.1結論 80 6.2未來研究建議 80 參考文獻 82

    [1] D. Leggate and R. J. Kerkman, “Pulse-based dead-time compensator for PWM voltage inverters,” IEEE Trans. Ind. Electron., vol. 44, no. 2, pp. 191–197, Apr. 1997.
    [2] S. Y. Kim, W. Lee, M. S. Rho, and S. Y. Park, “Effective dead-time compensation using a simple vectorial disturbance estimator in PMSM drives,” IEEE Trans. Ind. Electron., vol. 57, no. 5, pp. 1609–1614, May 2010.
    [3] H. Kim, H. Moon, and M. Youn, “On-line dead-time compensation method using disturbance observer,” IEEE Trans. Power Electron., vol. 18, no. 6, pp. 1336–1345, Nov. 2003.
    [4] T. Summers and R. Betz, “Dead-time issues in predictive current control,” IEEE Trans. on Ind. Appl., vol. 40, pp. 835 – 844, May-June 2004.
    [5] J. H. Su and B. C. Hsu, “Application of small-gain theorem in the dead-time compensation of voltage-source-inverter drives,” IEEE Trans. Ind. Electron., vol. 52, no. 5, pp. 1456–1458, Oct. 2005.
    [6] A. R. Munoz and T. A. Lipo, “On-line dead-time compensation technique for open-loop PWM-VSI drives,” IEEE Trans. Power Electron., vol. 14, no. 4, pp. 683–689, Jul. 1999.
    [7] Y. K. Lin and Y. S. Lai, “Dead-time elimination of PWM-controlled inverter converter without separate power sources for current polarity detection circuit,” IEEE Trans. Ind. Electron., vol. 56, no. 6, pp. 2121– 2127, Jun. 2009.
    [8] N. Urasaki, T. Senjyu, K. Uezato, and T. Funabashi, “Adaptive dead-time compensation strategy for permanent magnet synchronous motor drive,” IEEE Trans. Energy Convers., vol. 22, no. 2, pp. 271–280, Jun. 2007.
    [9] H. S. Kim, K. H. Kim, and M. J. Youn, “On-line dead-time compensation method based on time delay control,” IEEE Trans. Control Syst. Technol., vol. 11, no. 2, pp. 279–285, Mar./Apr. 2003.
    [10] L. Kan and Z. Q. Zhu, “Online estimation of the rotor flux linkage and voltage-source inverter nonlinearity in permanent magnet synchronous machine drives,” IEEE Trans. Power Electron., vol. 29, no. 1, pp. 418–427, Jan. 2014.
    [11] N. Urasaki, T. Senjyu, K. Uezato, and T. Funabashi, “An adaptive deadtime compensation strategy for voltage source inverter fed motor drives,” IEEE Trans. Power Electron., vol. 20, no. 5, pp. 1150–1160, Sep. 2005.
    [12] T. Qiu, X. Wen, and F. Zhao, “Adaptive-Linear-Neuron-Based Dead-Time Effects Compensation Scheme for PMSM Drives,” IEEE Trans. on Power Electronics, Vol.31, pp.2530-2538. Mar., 2016.
    [13] S. Y. Kim and S. Y. Park, “Compensation of dead-time effects based on adaptive harmonic filtering in the vector-controlled AC motor drives,” IEEE Trans. Ind. Electron., vol. 54, no. 3, pp. 1768–1777, Jun. 2007.
    [14] M. H. Vafaie, B. M. Dehkordi, P. Moallem, and A. Kiyoumarsi, “Minimizing torque and flux ripples and improving dynamic response of PMSM using a voltage vector with optimal parameters,” IEEE Trans. Ind. Electron., vol. 63, no. 6, pp. 3876–3888, Jun. 2016.
    [15] S. H. Hwang and J. M. Kim, “Dead time compensation method for voltage-fed PWM inverter,” IEEE Trans. Energy Convers., vol. 25, no. 1, pp. 1–10, Mar. 2010.
    [16] R. J. Kerkman, D. Leggate, D. W. Schlegel and C. Winterhalter, “Effects of parasitics on the control of voltage source inverters,” IEEE Trans. Ind. Electron., vol. 18, no. 1, pp. 140–150, Feb. 2003.
    [17] B. Widrow and M. A. Lehr, “30 years of adaptive neural networks: Percentron, MAdaline, and backpropagation,” Proc. IEEE, vol. 78, no. 9, pp. 1415–1442, Sep. 1990.
    [18] K. Liu and Z. Q. Zhu, “Mechanical parameter estimation of permanent magnet synchronous machines with aiding from estimation of rotor PM flux linkage,” IEEE Trans. Ind. Appl., vol. 51, no. 4, pp. 3115–3125, Jul./Aug. 2015.
    [19] R. C. Dodson, P. D. Evans, H. T. Yazdi, and S. C. Harley, “Compensating for dead time degradation of PWM inverter waveforms,” in Proc. Inst. Elect. Eng. B, vol. 137, no. 2, pp. 73–81, Mar. 1990.
    [20] H. Zhou, X. Wen, and F. Zhao, “Dead-time compensation method of restraining zero-current clamping effects for VSI,” Electric Machines and Control, vol. 15, pp. 26-32, Jan. 2011.
    [21] Q. Wang, H. Luo, X. Deng, and S. Wan, “An improved method of dead time compensation in the zero-crossing current region with low-frequency operation,” in Proc. 2nd IEEE Conf. Ind. Electron. Appl., May 23–25, 2007, pp. 1971–1975.
    [22] Y. Park and S. K. Sul, “A novel method utilizing trapezoidal voltage to compensate for inverter nonlinearity,” IEEE Trans. Power Electron., vol. 27, no. 12, pp. 4837–4846, Dec. 2012.
    [23] G. Shen, W. Yao, B. Chen, K. Wang, K. Lee, and Z. Lu, “Automeasurement of the inverter output voltage delay curve to compensate for inverter nonlinearity in sensorless motor drives,” IEEE Trans. Power Electron., vol. 29, no. 10, pp. 5542–5553, Oct. 2014.
    [24] Q. Huang, W. Niu, H. Xu, C. Fang and L. Shi, “Analysis on dead-time compensation method for direct-drive PMSM servo system,” in Proc. International Conference on Electrical Machines and Systems, Oct. 26-29, 2013, pp.1271-1276.
    [25] A. R. Munoz and T. A. Lipo, “On-line dead-time compensation technique for open-loop PWM-VSI drives,” IEEE Trans. Power Electron., vol. 14, no. 4, pp. 683–689, Jul. 1999.
    [26] D. E. Salt, D. Drury, D. Holliday, A. Griffo, P. Sangha, and A. Dinu, “Compensation of inverter nonlinear distortion effects for signal-injection based sensorless control,” IEEE Trans. Ind. Appl., vol. 47, no. 5, pp. 2084–2092, Sep./Oct. 2011.
    [27] Y. Park and S. K. Sul, “Implementation schemes to compensate for inverter nonlinearity based on trapezoidal voltage,” IEEE Trans. Ind. Appl., vol. 50, no. 2, pp. 1066–1073, Mar./Apr. 2014.
    [28] Z. Zhang and L. Xu, “Dead-time compensation of inverters considering snubber and parasitic capacitance,” IEEE Trans. Power Electron., vol. 29, no. 6, pp. 3179–3187, Jun. 2014.
    [29] D. M. Park and K. H. Kim, “Parameter-independent online compensation scheme for dead time and inverter nonlinearity in IPMSM drive through Waveform analysis,” IEEE Trans. Ind. Electron., vol. 61, no. 2, pp. 701–707, Feb. 2014.
    [30] 劉子瑜,基於弦波電流驅動於永磁同步馬達電流迴路控制之研究,碩士論文,國立成功大學電機工程學系,2009。
    [31] 李文宏,具廣範圍調速與啟動高可靠特性之內藏式永磁同步馬達無位置感測驅動器之設計與實現,碩士論文,國立成功大學電機工程學系,2015。
    [32] F. Blaschke, “The principle of field orientation applied to the new trans-vector closed-loop control system for rotating field machines” Siemens-Rev., vol. 39, pp. 217–220, 1972.
    [33] W. C. Duesterhoeft, M. W. Schulz, and E. Clarke, “Determination of instantaneous currents and voltages by means of alpha, beta, and zero components,” Trans. Amer. Inst. Elect. Eng., vol. 70, no. 2, pp. 1248– 1255, 1951.
    [34] R. H. Park, “Two reaction theory of synchronous machines. Generalized method of analysis—Part I,” in Proc. Winter Convention AIEE, 1929, pp. 716–730.
    [35] 李守富,基於適應性法則之三層中性點箝位靜態同步虛功率補償器設計,碩士論文,國立中山大學電機工程學系,2011。

    無法下載圖示 校內:2022-07-18公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE