| 研究生: |
白亦捷 Pai, Yi-Chieh |
|---|---|
| 論文名稱: |
使用適應型線性神經元方法於永磁同步馬達驅動器之怠滯效應補償 Dead-time Effect Compensation of PMSM Drive Using Adaptive Linear Neuron Method |
| 指導教授: |
鄭銘揚
Cheng, Ming-Yang |
| 共同指導教授: |
梁從主
Liang, Tsorng-Juu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 怠滯時間 、適應型線性神經元 、最小均方演算法 |
| 外文關鍵詞: | short circuit of inverter, nonlinearity compensation, dead-time effects, adaptive-linear-neuron (ADALINE) |
| 相關次數: | 點閱:102 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了避免脈寬調變(Pulse Width Modulation, PWM)逆變器的開關元件上臂與下臂同時互補切換過程中,由於開關非理想之特性造成短路(short through)的狀況,會在上下臂開關切換訊號中置入一段延遲時間,也是所謂的怠滯時間(dead-time)。這種方法的主要缺點是可能會發生輸出相電流諧波分量上升與輸出電壓失真。有鑑於此,本論文提出了一種基於適應型線性神經元(Adaptive Linear Neuron, ADALINE)演算法的怠滯效應補償控制策略,使用最小均方演算法來線上估測干擾電壓。本論文所提出的方法有以下幾項優點: 一、不需要電氣參數和相電流極性的資訊; 二、沒有複雜的數學計算及額外的硬體; 三、實現所提出之方法所需的唯一資訊是d軸電流和轉子位置。本論文透過低成本之16位元單晶片dsPIC30F4011實現並驗證所提出方法之可行性。
One of the commonly used approaches to avoid the short through phenomenon of power devices for pulse-width-modulation (PWM) inverters is to add dead-time into the control signals. The major drawbacks of this kind of approaches include distortion in output phase voltage and rise in harmonics of output phase currents. As a result, this thesis proposes an adaptive-linear-neuron based nonlinearity compensation strategy to cope with the dead-time effects. In particular, by minimizing the feedback d-axis current error, the amplitude of disturbance compensation voltage Vdead is self-tuned using the least mean square algorithm. The dead-time compensation method developed in this thesis has several appealing features: First, it does not need any information about electric parameters and phase current polarity. Second, the proposed approach is also free of complex mathematical computations and additional hardware. Third, only the information of q-axis current and rotor position are essential in implementing the proposed approach. Experimental results indicate that the proposed dead-time compensation approach is feasible.
[1] D. Leggate and R. J. Kerkman, “Pulse-based dead-time compensator for PWM voltage inverters,” IEEE Trans. Ind. Electron., vol. 44, no. 2, pp. 191–197, Apr. 1997.
[2] S. Y. Kim, W. Lee, M. S. Rho, and S. Y. Park, “Effective dead-time compensation using a simple vectorial disturbance estimator in PMSM drives,” IEEE Trans. Ind. Electron., vol. 57, no. 5, pp. 1609–1614, May 2010.
[3] H. Kim, H. Moon, and M. Youn, “On-line dead-time compensation method using disturbance observer,” IEEE Trans. Power Electron., vol. 18, no. 6, pp. 1336–1345, Nov. 2003.
[4] T. Summers and R. Betz, “Dead-time issues in predictive current control,” IEEE Trans. on Ind. Appl., vol. 40, pp. 835 – 844, May-June 2004.
[5] J. H. Su and B. C. Hsu, “Application of small-gain theorem in the dead-time compensation of voltage-source-inverter drives,” IEEE Trans. Ind. Electron., vol. 52, no. 5, pp. 1456–1458, Oct. 2005.
[6] A. R. Munoz and T. A. Lipo, “On-line dead-time compensation technique for open-loop PWM-VSI drives,” IEEE Trans. Power Electron., vol. 14, no. 4, pp. 683–689, Jul. 1999.
[7] Y. K. Lin and Y. S. Lai, “Dead-time elimination of PWM-controlled inverter converter without separate power sources for current polarity detection circuit,” IEEE Trans. Ind. Electron., vol. 56, no. 6, pp. 2121– 2127, Jun. 2009.
[8] N. Urasaki, T. Senjyu, K. Uezato, and T. Funabashi, “Adaptive dead-time compensation strategy for permanent magnet synchronous motor drive,” IEEE Trans. Energy Convers., vol. 22, no. 2, pp. 271–280, Jun. 2007.
[9] H. S. Kim, K. H. Kim, and M. J. Youn, “On-line dead-time compensation method based on time delay control,” IEEE Trans. Control Syst. Technol., vol. 11, no. 2, pp. 279–285, Mar./Apr. 2003.
[10] L. Kan and Z. Q. Zhu, “Online estimation of the rotor flux linkage and voltage-source inverter nonlinearity in permanent magnet synchronous machine drives,” IEEE Trans. Power Electron., vol. 29, no. 1, pp. 418–427, Jan. 2014.
[11] N. Urasaki, T. Senjyu, K. Uezato, and T. Funabashi, “An adaptive deadtime compensation strategy for voltage source inverter fed motor drives,” IEEE Trans. Power Electron., vol. 20, no. 5, pp. 1150–1160, Sep. 2005.
[12] T. Qiu, X. Wen, and F. Zhao, “Adaptive-Linear-Neuron-Based Dead-Time Effects Compensation Scheme for PMSM Drives,” IEEE Trans. on Power Electronics, Vol.31, pp.2530-2538. Mar., 2016.
[13] S. Y. Kim and S. Y. Park, “Compensation of dead-time effects based on adaptive harmonic filtering in the vector-controlled AC motor drives,” IEEE Trans. Ind. Electron., vol. 54, no. 3, pp. 1768–1777, Jun. 2007.
[14] M. H. Vafaie, B. M. Dehkordi, P. Moallem, and A. Kiyoumarsi, “Minimizing torque and flux ripples and improving dynamic response of PMSM using a voltage vector with optimal parameters,” IEEE Trans. Ind. Electron., vol. 63, no. 6, pp. 3876–3888, Jun. 2016.
[15] S. H. Hwang and J. M. Kim, “Dead time compensation method for voltage-fed PWM inverter,” IEEE Trans. Energy Convers., vol. 25, no. 1, pp. 1–10, Mar. 2010.
[16] R. J. Kerkman, D. Leggate, D. W. Schlegel and C. Winterhalter, “Effects of parasitics on the control of voltage source inverters,” IEEE Trans. Ind. Electron., vol. 18, no. 1, pp. 140–150, Feb. 2003.
[17] B. Widrow and M. A. Lehr, “30 years of adaptive neural networks: Percentron, MAdaline, and backpropagation,” Proc. IEEE, vol. 78, no. 9, pp. 1415–1442, Sep. 1990.
[18] K. Liu and Z. Q. Zhu, “Mechanical parameter estimation of permanent magnet synchronous machines with aiding from estimation of rotor PM flux linkage,” IEEE Trans. Ind. Appl., vol. 51, no. 4, pp. 3115–3125, Jul./Aug. 2015.
[19] R. C. Dodson, P. D. Evans, H. T. Yazdi, and S. C. Harley, “Compensating for dead time degradation of PWM inverter waveforms,” in Proc. Inst. Elect. Eng. B, vol. 137, no. 2, pp. 73–81, Mar. 1990.
[20] H. Zhou, X. Wen, and F. Zhao, “Dead-time compensation method of restraining zero-current clamping effects for VSI,” Electric Machines and Control, vol. 15, pp. 26-32, Jan. 2011.
[21] Q. Wang, H. Luo, X. Deng, and S. Wan, “An improved method of dead time compensation in the zero-crossing current region with low-frequency operation,” in Proc. 2nd IEEE Conf. Ind. Electron. Appl., May 23–25, 2007, pp. 1971–1975.
[22] Y. Park and S. K. Sul, “A novel method utilizing trapezoidal voltage to compensate for inverter nonlinearity,” IEEE Trans. Power Electron., vol. 27, no. 12, pp. 4837–4846, Dec. 2012.
[23] G. Shen, W. Yao, B. Chen, K. Wang, K. Lee, and Z. Lu, “Automeasurement of the inverter output voltage delay curve to compensate for inverter nonlinearity in sensorless motor drives,” IEEE Trans. Power Electron., vol. 29, no. 10, pp. 5542–5553, Oct. 2014.
[24] Q. Huang, W. Niu, H. Xu, C. Fang and L. Shi, “Analysis on dead-time compensation method for direct-drive PMSM servo system,” in Proc. International Conference on Electrical Machines and Systems, Oct. 26-29, 2013, pp.1271-1276.
[25] A. R. Munoz and T. A. Lipo, “On-line dead-time compensation technique for open-loop PWM-VSI drives,” IEEE Trans. Power Electron., vol. 14, no. 4, pp. 683–689, Jul. 1999.
[26] D. E. Salt, D. Drury, D. Holliday, A. Griffo, P. Sangha, and A. Dinu, “Compensation of inverter nonlinear distortion effects for signal-injection based sensorless control,” IEEE Trans. Ind. Appl., vol. 47, no. 5, pp. 2084–2092, Sep./Oct. 2011.
[27] Y. Park and S. K. Sul, “Implementation schemes to compensate for inverter nonlinearity based on trapezoidal voltage,” IEEE Trans. Ind. Appl., vol. 50, no. 2, pp. 1066–1073, Mar./Apr. 2014.
[28] Z. Zhang and L. Xu, “Dead-time compensation of inverters considering snubber and parasitic capacitance,” IEEE Trans. Power Electron., vol. 29, no. 6, pp. 3179–3187, Jun. 2014.
[29] D. M. Park and K. H. Kim, “Parameter-independent online compensation scheme for dead time and inverter nonlinearity in IPMSM drive through Waveform analysis,” IEEE Trans. Ind. Electron., vol. 61, no. 2, pp. 701–707, Feb. 2014.
[30] 劉子瑜,基於弦波電流驅動於永磁同步馬達電流迴路控制之研究,碩士論文,國立成功大學電機工程學系,2009。
[31] 李文宏,具廣範圍調速與啟動高可靠特性之內藏式永磁同步馬達無位置感測驅動器之設計與實現,碩士論文,國立成功大學電機工程學系,2015。
[32] F. Blaschke, “The principle of field orientation applied to the new trans-vector closed-loop control system for rotating field machines” Siemens-Rev., vol. 39, pp. 217–220, 1972.
[33] W. C. Duesterhoeft, M. W. Schulz, and E. Clarke, “Determination of instantaneous currents and voltages by means of alpha, beta, and zero components,” Trans. Amer. Inst. Elect. Eng., vol. 70, no. 2, pp. 1248– 1255, 1951.
[34] R. H. Park, “Two reaction theory of synchronous machines. Generalized method of analysis—Part I,” in Proc. Winter Convention AIEE, 1929, pp. 716–730.
[35] 李守富,基於適應性法則之三層中性點箝位靜態同步虛功率補償器設計,碩士論文,國立中山大學電機工程學系,2011。
校內:2022-07-18公開