簡易檢索 / 詳目顯示

研究生: 莊文智
Zhuang, Wen-Zhi
論文名稱: 運用符號函數在具輸入限制之多輸入多輸出系統的最佳數位再設計
Optimal Digital Redesign of MIMO Systems under Control Constraints︰ Sign Function Method
指導教授: 蔡聖鴻
Tsai, Sheng-Hong Jason
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 80
中文關鍵詞: 符號函數輸入限制最佳化控制數位再設計線性二次式追縱
外文關鍵詞: sign function, input constraint, optimal control, digital redesign, linear quadratic analog tracker
相關次數: 點閱:125下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文提出符號函數技術來解決多輸入多輸出系統的輸入飽和限制問題。傳統的線性二次式類比追蹤器雖有良好的追蹤效果,但是在暫態響應或追蹤軌跡為劇烈變化時會產生很大的輸入能量,如此巨大的輸入能量甚至在自然界是難以實現的。因此運用符號函數的特性來抑制巨大的輸入訊號。首先,根據最佳線性化方法可分析符號函數的特性。接著,將符號函數應用在線性二次式類比追蹤器,以達到壓縮控制輸入的效果。此外,合理壓縮控制的過程也已被詳細的驗證。最後,運用這些線性模型設計具有壓縮控制輸入的數位重新設計追蹤器。儘管使用符號函數的模型跟其它的輸入限制飽和致動器一樣會損失少部份追蹤的效果,但是卻不須如其他的限制飽和致動器(例如:windup)須設定較多參數,其只須使用簡單且基本的最佳化控制概念即可。

    In this thesis, a sign function control is proposed to resolve the input constraint problem for MIMO systems. A conventional linear quadratic analog tracker with the high-gain property has good tracking performance. However, the great energy of the control input is usually required and may not exist in nature world due to the violent variation of the transient response and the specific reference. Hence, the sign function is applied to constrain the huge control input. Firstly, the sign function property can be analyzed by optimal linearization algorithm. Then, using the sign function control for the linear quadratic analog tracker can compress the control input. Finally, these models are applied to design the digital redesign tracker which still can compress the control input. Although the sign function control loses slightly tracking performance as well as other constrained actuators, the parameters of the proposed controller which just applies optimization control theorem are less than other constraint actuators (e.g. windup).

    中文摘要 I Abstract II Acknowledgments III List of Contents IV List of Figures V Content Chapter 1. Introduction 1-1 Chapter 2. Feature of the Sign Function 2-1 2.1 Introduction 2-2 2.2 The observation of the sign function via optimal linearization algorithm 2-2 2.3 The observation of sign function via the binomial theorem 2-10 2.4 Sign function for linear quadratic analog tracker design 2-12 Chapter 3. Input Saturation for Optimal Control 3-1 3.1 Introduction 3-2 3.2 Input constraint consideration for a SISO system 3-2 3.3 Input constraint consideration for a MIMO system 3-10 3.4 The explicit high gain condition for MIMO case 3-12 3.5 An Illustrative example 3-13 Chapter 4. Digital Redesign Tracker via Sign function for Linear Sampled-Data Systems 4-1 4.1 Introduction 4-2 4.2 Digital redesign of the linear quadratic analog tracker with sign function 4-2 4.3 An illustrative example 4-4 Chapter 5. Conclusion 5-1 Reference

    [1] M. Kanamori and M. Tomizuka, "Dynamic anti-integrator-Windup controller design for linear systems with actuator saturation," Journal of Dynamic Systems, Measurement, and Control, vol. 129, pp. 1-12, Jan. 2007.

    [2] Ellen Applebaum and Joseph Z. Ben-Asher, "Control of an aeroelastic system with actuator saturation," Journal of Guidance, Control, and Dynamics, vol. 30, no. 2, pp. 548-556, March-April 2007.

    [3] P. Hippe, "Windup prevention for stable and unstable MIMO systems," International Journal of Systems Science, vol. 37, no. 2, pp. 67-78, Feb. 10, 2006.

    [4] P. Hippe, "Windup prevention for unstable systems," Automatica, vol. 39, pp. 1967-1973, 2003.

    [5] Andrew R. Teel, "Anti-windup for exponentially unstable linear systems," Inter. Journal of Robust and Nonlinear Control, vol. 9, pp. 701-716, 1999.

    [6] M. M. Seron, G. C. Goodwin, and S. F. Graebe, "Control system design issues for unstable linear systems with saturated inputs," IEE Proc.-Control Theory Appl., vol. 142, no. 4, July 1995.

    [7] J.D. Roberts,: ‘linear model reduction and solution of the algebraic Riccati equation by use of the sign function’, CUED/B-CONTROL/TR 12 Report, Cambridge University, 1971, also published in Int. J. Control. vol. 32, pp.677-687, 1980

    [8] L. S. Shieh, J. S. H. Tsai, and R. E. Bates, “The generalized matrix sector function and the separation of matrix eigenvalues,” IMA Journal of Mathematical Control and Information, vol. 2, pp. 251-258, 1985.

    [9] L. S. Shieh, Y. T. Tsay, and R. E. Yates,: ‘Some properties of matrix sign functions derived from continued fractions’, IEE Proc. D. Control Theory & Appl., vol. 130, no. 3, pp. 111-118, 1983.

    [10] S. M. Guo, L. S. Shieh, G. Chen, and C. F. Lin, “Effective chaotic orbit tracker: a prediction-based digital redesign approach,” IEEE Trans. On Circuits and Systems-I, Fundamental Theory and Applications, vol. 47, no. 11, pp. 1557-1570, Nov. 2000.

    下載圖示 校內:2009-08-05公開
    校外:2009-08-05公開
    QR CODE