簡易檢索 / 詳目顯示

研究生: 劉尉仕
Liu, Wei-Shih
論文名稱: 應用於燃料電池系統之疊接型轉換器分析與設計
Analysis and Design of Cascoded Converters for Fuel Cell Power Systems
指導教授: 陳建富
Chen, Jiann-Fuh
林瑞禮
Lin, Ray-Lee
梁從主
Liang, Tsorng-Juu
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2010
畢業學年度: 99
語文別: 英文
論文頁數: 160
中文關鍵詞: 燃料電池混合動力系統電力轉換器電池超電容疊接電能管理
外文關鍵詞: fuel cell, hybrid power system, power converter, battery, ultracapacitor, cascode, power management
相關次數: 點閱:124下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出並探討疊接架構於燃料電池的應用,燃料電池(Fuel cells)是相當有潛力之再生能源,利用疊接轉換器之電壓補償和分配的特性提升燃料電池電力系統之效能。疊接式電源轉換器僅透過一隔離式電力轉換器處理少部份能量,大部份能量直接傳送至輸出負載,以電壓補償之概念來提升系統之效率。在燃料電池的應用中,可利用疊接之特性來補償燃料電池的極化損失,藉此調整燃料電池系統輸出電壓。另外,本文提出各種不同型式之疊接轉換器,並以順向疊接轉換器(Cascoded forward converter)為例,推導並設計其電壓增益、效率、小訊號模型、及電路參數。
    利用疊接特性,提出一高效率雙向疊接式電力轉換器。結合燃料電池(Fuel cell)、鉛酸電池(Battery)、超電容模組(Ultra capacitor module),完成一混合電源系統並以模擬車輛運行方式討論電力潮流控制。另外,提出一主動式燃料電池電壓控制策略,以數位單晶片(DSP TMS320F2407A) 為控制核心,藉以管理疊接式混合電源轉換器之間的電力潮流。文中將推導轉換器之六方向效率及電壓增益比,並以模擬及實測結果來驗證混合電源系統之電力潮流和效率,本文提出之疊接式混合電源轉換器之整體效率可高達96%。為了高電壓之應用,延伸此高效率之雙向疊接式電力轉換器,以多層電源疊接之概念,提出疊接式三電源混合供電系統。另外,提出雙回路主動燃料電池電壓控制策略,來控制此三電源疊接系統,以達到高效率的電能管理。
    為了彈性連接轉換器以達到高電壓的應用需求,本文將延伸電源疊接結構至多模組疊接結構。提出自動主控式回路調整(Automatic-master loop regulation)控制並結合省電模式(Green-mode)控制,針對不同容量之電力轉換器,以電壓分配的方式管理各個疊接模組之間的功率。最後,利用多台不同額定功率的順向式轉換器進行疊接,結合提出的控制方法,以實測結果來驗證理論分析。
    基於疊接概念,已提出雙向疊接式電力轉換器及多層疊接式轉換器,應用於燃料電池混合供電系統中。更針對多模組疊接系統,探討不同額定功率模組之電壓分配及改善系統之輕載轉換效率。而各類疊接式轉換器之理論推導及實測結果,已於本論文中被驗證和實現。

    This dissertation presents and studies the cascoded converter configuration for fuel cell (FC) applications. Using the concepts of voltage compensation and voltage allocation, the performance and efficiency of an FC conversion system can be improved. The source cascode converter provides power, which is divided into two parts; a fraction of the power is passed through a converter resulting in conversion loss, whereas the other part is supplied directly to the output load without any power loss. Therefore, the source cascoded topology uses the concept of voltage compensation to achieve high efficiency. Using the cascoded topology in an FC-supplied system, the cascoded characteristics can be utilized to compensate the polarization loss of FC for regulating the output voltage. A number of cascoded circuits are also proposed in this dissertation. Based on an example of a cascoded forward converter, the voltage gain ratio, efficiency, small signal model, and circuit parameters are derived and designed for FC application.
    Utilizing a cascoded bidirectional configuration, a hybrid power system combining FC, battery, and ultra capacitor modules (UCM) is proposed for vehicle applications. An active FC voltage control strategy is presented to manage the power flows of the proposed hybrid system through a control chip (DSP TMS320F2407A). Six-direction voltage gains and efficiencies of the proposed hybrid system are derived in this dissertation. The simulation and experimentation results are used to verify the efficiency and power flows of the proposed hybrid system. The overall efficiency of the proposed hybrid power system can achieve 96%. For high-voltage applications, a three-source cascoded system is presented by extending the high-efficiency cascoded bidirectional configuration and using the multi-source cascoded concept in this dissertation. Moreover, a two-loop active FC voltage control for the proposed system is presented to achieve highly efficient power management.
    To address flexible connections for high-voltage applications, the source cascoded topology is extended to a multi-cascoded topology. A novel automatic master loop regulation (AMLR) control scheme and the green-mode control scheme are combined to control multi-module cascoded converters at different power ratings, where the output voltage of the individual converter can be allocated to achieve optimum power management. Finally, the experimental prototypes of a forward multi-cascode system at different power ratings combined with the AMLR and green-mode control scheme are used to verify the voltage-allocation ability.
    Based on the cascode concepts, the bidirectional cascoded converter and multi-source cascoded system have been designed and implemented for the FC hybrid power system. In addition, in multi-module cascoded system, the voltage allocation is implemented and light-load efficiency is improved. These theoretical analysis and experimental results of each cascoded configuration have been verified and implemented in this dissertation.

    LIST OF CONTENTS I LIST OF FIGURES IV LIST OF TABLES X NOMENCLATURE XI CHAPTER 1 INTRODUCTION 1 1.1 BACKGROUND 1 1.2 CHARACTERISTICS OF FC 2 1.3 MOTIVATION AND OBJECTIVES OF THE RESEARCH 4 1.4 DISSERTATION OUTLINE AND MAJOR RESULTS 7 CHAPTER 2 ANALYSIS OF CASCODED CONVERTER FOR FC SYSTEM 9 2.1 INTRODUCTION 9 2.2 CASCODED CONFIGURATION 10 2.3 FC SOURCE ANALYSIS 12 2.4 CASCODED FORWARD CONVERTER 17 2.4.1 OPERATIONAL PRINCIPLE ANALYSIS 17 2.4.2 STEADY-STATE ANALYSIS 22 2.4.3 EXPERIMENTAL RESULTS OF CASCODED FORWARD CONVERTER 27 2.5 MODELING OF CASCODED TOPOLOGY 32 2.5.1 PWM SWITCH MODEL 32 2.5.2 BASED CASCODED MODEL 33 2.5.3 SMALL SIGNAL MODEL OF OPEN-LOOP CASCODED FORWARD CONVERTER 35 2.5.4 EXPERIMENTAL VERIFICATION OF CASCODED FORWARD CONVERTER 40 2.6 CIRCUIT EXTENSION WITH GENERALIZED CONCEPT 44 2.6.1 SCHEMES FOR LEAKAGE ENERGY RECOVERY 44 2.7 SUMMARY 50 CHAPTER 3 BI-DIRECTIONAL CASCODED CONVERTER FOR FC HYBRID POWER SYSTEM 51 3.1 INTRODUCTION 51 3.2 CONFIGURATION ANALYSIS FOR FC HYBRID POWER SYSTEM 52 3.3 ANALYSIS OF PROPOSED CASCODED BIDIRECTIONAL CONFIGURATION 55 3.3.1 GAINS ANALYSIS OF PROPOSED CONVERTER 55 3.3.2 COMPARISON OF GAINS AND EFFICIENCY BETWEEN PROPOSED CONVERTER AND CONVENTIONAL CONVERTER 61 3.4 ANALYSIS OF CONTROL STRATEGY AND HYBRID POWER-ACTIVE FC VOLTAGE CONTROL 69 3.4.1 VOLTAGE CHARACTERISTICS OF PEMFC 69 3.4.2 UCM DESIGN FOR HYBRID POWER SOURCES 70 3.4.3 ACTIVE FC VOLTAGE-CONTROL STRATEGY 71 3.5 ANALYSIS OF POWER FLOWS AND EFFICIENCIES 75 3.5.1 POWER FLOWS ANALYSIS 75 3.5.2 ANALYSIS OF OVERALL EFFICIENCY 79 3.6 EXPERIMENTAL RESULTS 80 3.7 SUMMARY 86 CHAPTER 4 MULTI-SOURCES CASCODED HYBRID POWER SYSTEM 87 4.1 INTRODUCTION 87 4.2 EFFICIENCY ANALYSIS OF MULTI-SOURCES CASCODED TOPOLOGY 87 4.3 ANALYSIS OF PROPOSED THREE-SOURCES CASCODED HYBRID SYSTEM 91 4.4 ANALYSIS OF CONTROL STRATEGY AND HYBRID POWER –TWO-LOOP ACTIVE FC VOLTAGE CONTROL 98 4.4.1 CONTROL STRATEGY-TWO-LOOP ACTIVE FC VOLTAGE CONTROL 98 4.4.2 ANALYSIS OF POWER FLOWS FOR THREE-SOURCES CASCODED SYSTEM 103 4.5 EXPERIMENTAL RESULTS 107 4.6 SUMMARY 114 CHAPTER 5 MUTLI-MODULE CASCODED CONVERTER 115 5.1 INTRODUCTION 115 5.2 PRINCIPLE OF VOLTAGE ALLOCATION 117 5.2.1 CURRENT-DROOP ANALYSIS FOR VOLTAGE ALLOCATION 117 5.2.2 CHARACTERIZATION OF CLOSED-LOOP PCM FORWARD CONVERTER 119 5.3 VOLTAGE ALLOCATION CONTROL SCHEME 128 5.3.1 PROPOSED AMLR CONTROL SCHEME 130 5.3.2 EFFICIENCY IMPROVEMENT AT GREEN-MODE 134 5.4 IMPLEMENTATION AND EXPERIMENTAL RESULTS 136 5.5 SUMMARY 145 CHAPTER 6 CONCLUSION AND FUTURE WORK 146 REFERENCES 149 APPENDIX 157 VITA 159 LIST OF PUBLICATIONS 160

    A.Fuel Cell Application
    [A1] J. E. Larminie and A. Dicks, Fuel Cell Systems Explained. Chichester, U.K. Wiley, 2000, pp.308.
    [A2] EG&G Technical Services, Inc. Science Applications International Corporation, Fuel Cell Handbook (Sixth Edition), DOE/NETL-2002/1179, Nov. 2002.
    [A3] EG&G Technical Services, Inc. Science Applications International Corporation, Fuel Cell Handbook (Seventh Edition), DOE/NETL-2002/1179, Nov. 2004.
    [A4] P. Famouri and R. S. Gemmen, “Electrochemical circuit model of a PEM fuel cell,” in Proc. IEEE Power Eng. Soc. General Meeting, pp. 1436-1440, 2003.
    [A5] J. M. Correa, F. A. Farret and J. R. Gomes, “Simulation of fuel-cell stacks using a computer-controlled power rectifier with the purposes of actual high-power injection applications,” IEEE Trans. Industry Application, vol. 39, pp. 1136-1142, July/Aug. 2003.
    [A6] C. Wang, M. H. Nehrir and S. R. Shaw, “Dynamic models and model validation for PEM fuel cell using electrical circuits,” IEEE Trans. Energy Conversion, vol. 20, no. 2, pp. 442-451, June 2005.
    [A7] “Data sheet of a 500W fuel cell stack”, BPS Technology, Boyam, 2004.
    [A8] J. Kim, S. Lee and S. Srinivasanm, “Modeling of proton exchange membrane fuel cell performance with an empirical equation,” Journal of Electrochemical Society, vol. 142, no.8, pp. 2670-267, Aug. 1995.
    [A9] G. Fontes, C. Turpin, S. Astier and T. A. Meynard, “Interactions between fuel cells and power converters: influence of current harmonics on a fuel cell stack” IEEE Trans. Power Electron., vol. 22, no. 2, pp. 670-678, March 2007.
    [A10] J. M. Corrêa, F. A. Farret, L. N. Canha and M. G. Simões, “ An electrochemical-based fuel-cell model suitable for electrical engineering automation approach,” IEEE Trans. Ind. Electron., vol. 51, no. 5, pp. 1103-1112, Oct. 2004.
    [A11] M. Amrhein and P. T. Krein, “Dynamic simulation for analysis of hybrid electric vehicle system and subsystem interactions, including power electronics,” IEEE Trans. Vehicular Tech., vol. 54, no. 3, pp. 825-836, May 2005.

    B. DC/DC Converter
    [B1] H. Xu, L. Kong and X. Wen, “Fuel cell power system and high power DC-DC converter,” IEEE Trans. Power Electron., vol. 19, no. 5, pp. 1250-1255, Sept. 2004.
    [B2] R. J. Wai, C. Y. Lin and C. C Chu, “High step-up DC-DC converter for fuel cell generation system,” in Proc. IEEE IECON 30th, Nov. 2004, pp. 57-62.
    [B3] H. Xu, L. Kong and X. Wen, “Fuel cell power system and high power DC-DC converter,” IEE CAS, vol. 19, no. 5, pp. 1250-1255, Sept. 2004.
    [B4] R. J. Wai and R. Y. Duan, “High step-up converter with coupled-inductor,” IEEE Trans. Power Electron., vol. 20, no. 5, pp. 1025-1035, Sept. 2005.
    [B5] K. C. Tseng and T. J. Liang, “Novel high-efficiency step-up converter,” IEE Proc, vol. 151, no. 2, pp. 182-190, March 2003.
    [B6] T. J. Liang and K. C. Tseng, “Analysis of integrated boost-flyback step-up converter,” IEE Proc, vol. 152, No. 2, pp. 217-225, March 2003.
    [B7] P. T. Krein, R. S. Balog and X. Geng, “High-frequency link inverter for fuel cells based on multiple-carrier PWM,” IEEE Trans. Power Electron., vol. 19, no. 5, pp. 1279-1285, Sept. 2004.
    [B8] H. Xu, L. Kong and X. Wen, “Fuel cell power system and high power DC-DC converter,” IEEE Trans. Power Electron., vol. 19, no. 5, pp. 1250-1255, Sept. 2004.
    [B9] J. F. Chen, W. S. Liu, R. L. Lin, T. J. Liang and C. H. Liu, “High-efficiency cascode forward converter of low power PEMFC system,” in Proc. IEEE IPEMC, vol. 1, Aug. 2006, pp. 361-367.
    [B10] J. I. Itoh and T. Fujii, “A new approach for high efficiency buck-boost DC/DC converter using series compensation,” in Proc. IEEE PESC, June 2008, pp. 2109-2114.
    [B11] P. J. Villegas, J. Sebastian, M. Hernando, F. Nuo and J. A. Martinez, “Average current mode control of series-switching post-regulators used in power factor correctors,” IEEE Trans. Power Electron., vol. 15, no. 5, pp. 813-819, Sept. 2000.
    [B12] X. Wang and L. Hedrich, “Hierarchical symbolic analysis of analog circuits using two-port networks,” in Proc. WSEAS 6th int. conf., 2007, pp. 21-26.
    [B13] B. Mammano, “Distributed power system,” Unitrode-Seminar, SEM-900, 1993.
    [B14] S. Luo, “A review of distributed power system Part I: DC distributed power system” IEEE Trans. Aerospace and Electron. System, vol 20, pp. 5-16, Aug. 2005.
    [B15] Y. Xi and P. K. Jain, “A forward converter topology with independently and precisely regulated multiple outputs,” IEEE Trans. Power Electron., vol. 18, no. 2, pp. 648-658, March 2003.
    [B16] T. J. Liang, T. H. Ai and J. F. Chen, “Flyback-forward power factor correction circuit with line-frequency ripple suppression,” IEE Proc, vol. 149, no. 6, pp. 474-480, Nov. 2002.
    [B17] J. J. Jozwik and M. K. Kazimierczuk, “Dual Sepic PWM switching- mode DC/DC power converter,” IEEE Trans. Industrial Electron., vol. 36, no. 1, pp. 64-70, Feb. 1989.
    [B18] J. P. Karst and K. Hoffmann, “Transductor based high speed gate drive,” in Proc. IEEE IECON 35th, 2004, pp. 100-104.
    [B19] R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics. 2nd Ed. John Wiley, New York, USA, 1950, pp. 39-60.
    [B20] J. N. Park and T. R. Zaloum, “A dual mode forward/flyback converter,” in Proc. IEEE PESC Record, 1982, pp. 3-13.
    [B21] S. K. Changchien, T. J. Liang, J. F. Chen and L. S. Yang, “Novel high step-up DC-DC converter for fuel cell energy conversion system,” IEEE Trans. Ind. Electron., vol. 57, no. 6, June 2010.
    [B22] R. J. Wai and R. Y. Duan, “High-efficiency power conversion for low power fuel cell generation system,” IEEE Trans. Power Electron., vol. 20, no. 4, pp. 847-856, July 2005.

    C. Modeling for PWM Converter
    [C1] V. Vorperian, "Simplified analysis of PWM converters using model of PWM switch. II. discontinuous conduction mode," IEEE Trans. Aerospace and Electron. Systems, vol. 26, pp. 497-505, 1990.
    [C2] V. Vorperian, "Simplified analysis of PWM converters using model of PWM switch. continuous conduction mode," IEEE Trans. on Aerospace and Electron. Systems, vol. 26, pp. 490-496, 1990.
    [C3] R. D. Middlebrook and S. Cuk, "A general unified approach to modeling switching converter power stages," in Proc. IEEE PESC, 1976.
    [C4] H. Y. Kanaan, K. AI-Haddad, A. Hayek, and I. Mougharbel, “Design, study, modelling and control of a new single-phase high power factor rectifier based on the single-ended primary inductance converter and the Sheppard-Taylor topology,” IET Power Electron., vol. 2, no. 2, pp. 163-177, March 2009.
    [C5] T. Suntio, “Unified average and small-signal modeling of direct-on-time control,” IEEE Trans. Ind. Electron., vol. 53, no. 1, pp. 287-295, Feb. 2006.
    [C6] A. Davoudi and J. Jatskevich, “Parasitics realization in state-space average-value modeling of PWM dc–dc converters using an equal area method,” IEEE Trans. Circuits and Systems, vol. 54, no. 9, pp. 1960-1967, Sept. 2007.

    D. Hybrid Power System
    [D1] Khaligh, M. Rahimi, Y. J. Lee, J. Cao, a. Emadi, S. D. Andrews, C. R. Robinson and C. Finnerty, “Digital control of an isolated active hybrid fuel cell/Li-Ion battery power supply,” IEEE Tran. Vehicular Technology, vol. 6, no. 2, pp. 3709-3721, Nov. 2007.
    [D2] A. Emadi, K. Rajashekara, S. S. Williamson and S. M. Lukic, “Topological overview of hybrid electric and fuel cell vehicular power system architectures and configurations,” IEEE Trans. Vehicular Technology, vol. 54, pp.763-770, May 2005.
    [D3] F. Z. Peng, M. Shen and K. Holland, “Application of Z-source inverter for traction drive of fuel cell – battery hybrid electric vehicles” IEEE Trans. Power Electron., vol. 22, pp. 1054-1061, May 2007.
    [D4] J. V. Mierlo, Y. Cheng, J. M. Timmermans and P. V. Bosschet, “Comparison of fuel cell hybrid propulsion topology with super-capacitor,” in Proc. IEEE EPE-PEMC, 2006, pp. 501-505.
    [D5] F. Barbir, PEM fuel cells: theory and practice. San Diego: Elsevier Academic Press, 2005, pp. 1-32, pp. 271-336.
    [D6] A. Khaligh, “Stability criteria for the energy storage bi-directional DC/DC converter in the Toyota hybrid system II,” in Proc. IEEE VPPC, Sept. 2007, pp. 348-352.
    [D7] E.C.W deJong, I. W. Hofsajer and J. A. Ferreira, “A new approach to low conversion ratio DC-DC converters,” in Proc. IEEE PESC 2002 vol. 2, pp. 431-436, June 2002.
    [D8] H. Chung, W. L. Cheung and K. S. Tang, “A ZCS bidirectional flyback DC/DC converter,” IEEE Trans. Power Electron., vol. 19, no. 6, pp. 1426-1434, Nov. 2004.
    [D9] R. J. Wai and R. Y. Duan, “High-efficiency bidirectional converter for power sources with great voltage diversity,” IEEE Trans. Power Electron., vol. 22, no. 5, pp. 1986-1996, Sept. 2007.
    [D10] M. Jain, M. Daniele and P. K. Jain “A bidirectional DC-DC converter topology for low power application,” IEEE Tran. Power Electron., vol.15, no. 4, pp. 595-606, July 2000.
    [D11] J. Zhang, J. S. Lai, R. Y. Kim and W. Yu, “High-power density design of a soft-switching high-power bidirectional DC-DC converter,” IEEE Trans. Power Electron., vol. 22, no. 4, pp. 1145-1153, July 2007.
    [D12] H. Plesko, J. Biela, J. Luomi and J. W. Kolar, “Novel concepts for integrating the electric drive and auxiliary DC-DC converter for hybrid vehicles,” IEEE Trans. Power Electron., vol. 23, no. 6, pp. 3025-3034, Nov. 2008.
    [D13] Z. Jiang and R. A. Dougal, “A hybrid fuel cell power supply with rapid dynamic response and high peak-power capacity,” in Proc. IEEE APEC’06, March 2006, pp. 1250-1255.
    [D14] H. Tao, J. L. Duarte and M. A. M. Hendrix, “Three-port triple-half-bridge bidirectional converter with zero-voltage switching,” IEEE Trans. Power Electron., vol. 23, pp. 782-792, March 2008.
    [D15] G. J. Su and L. Tang, “A multiphase, modular, bidirectional, triple-voltage DC-DC converter for hybrid and fuel cell vehicle power systems” IEEE Trans. Power Electron., vol. 23, no. 6, pp. 3035-3046, Nov. 2008.
    [D16] L. Gao, Z. Jiang and R. A. Dougal, “Evaluation of active hybrid fuel cell/battery power sources,” IEEE Tran. Aerospace and Electronic systems, vol. 41, no. 1, pp. 346-355, Jan. 2005.
    [D17] J. Moreno, M. E. Ortuzar and J. W. Dixon, “Energy-management system for a hybrid electric vehicle, using ultracapacitors and neural networks,” IEEE Trans. Ind. Electron., vol. 53, no. 2, pp. 614-623, April 2006.
    [D18] D. Li, Q. Chen, Z. Jia, J. Ke and Y. Xiong, “A novel series hybrid single-phase active power filter,” in Proc. IPEMC, 2004, vol. 1, pp. 242-245.
    [D19] D. Czarkowski and M. K. Kazimierczuk, “Linear circuit models of PWM flyback and buck/boost converters,” IEEE Trans. on Circuit and system I, vol. 39, no. 8, pp. 688-693, Aug. 1992.
    [D20] R. A. Dougal, L. Gao and S. Liu, “Ultracapacitor model with automatic order selection and capacity scaling for dynamic system simulation,” Journal of Power Sources, vol. 126, no. 1-2, pp. 250-257, Feb. 2004.
    [D21] Z. Jiang, L. Gao and R. A. Dougal, “Flexible multiobjective control of power converter in active hybrid fuel cell /battery power sources,” IEEE Tran. Power Electron., vol. 20, no. 1, pp. 244-253, Jan. 2005.
    [D22] M. Marchesoni and C. Vacca, “New DC-DC converter for energy storage system interfacing in fuel cell hybrid electric vehicles” IEEE Trans. Power Electron., vol. 22, pp. 301-308, Jan. 2007.
    [D23] A. Khaligh, M. Rahimi, Y. J. Lee, J. Cao, a. Emadi, S. D. Andrews, C. R. Robinson and C. Finnerty, “Digital control of an isolated active hybrid fuel cell/Li-Ion battery power supply,” IEEE Trans. Vehicular Technology, vol. 6, no. 2, pp. 3709-3721, Nov. 2007.

    E. Multi-Output Cascoded Converter
    [E1] S. N. Manias and G. Kostakis “Modular DC-DC converter for high-output voltage applications,” IEE proceedings-B, vol. 140, no. 2, pp. 97-102, March 1993.
    [E2] M. R. D. Al-Mothafar, “Comparison of large-signal behavior of control schemes for high-output voltage modular DC-DC converters,” in Proc. IEEE ICECS’99 6th, vol. 3, pp. 1427-1431, Sept. 1999.
    [E3] K. Siri, M. Willhoff and K. Conner, “Uniform voltage distribution control for series connected DC-DC converters,” IEEE Trans. Power Electron., vol. 22, no. 4, pp. 1269-1279, July 2007.
    [E4] F. C. Lee, P. Barbosa, P. Xu, J. Zhang, B. Yang and F. Canales, “Topologies and design considerations for distributed power system applications,” Proceedings of the IEEE, vol. 89, no. 6, pp. 939-950, June 2001.
    [E5] S. Luo, Z. Ye, R. L. Lin and F. C. Lee, “A classification and evaluation of paralleling methods for power supply modules,” 1998 VPEC Seminar Record, pp. 221-231.
    [E6] X. Ruan, W. Chen, L. Cheng, C. K. Tse, and Tao Zhang, “Control strategy for input-series-output-parallel converter,” IEEE Trans. Ind. Electron., vol. 56, no. 4, pp. 1174-1185, April 2009.
    [E7] E. Román, R. Alonso, P. Ibañez, S. Elorduizapatarietxe, and D. Goitia, “Intelligent PV module for grid-connected PV system,” IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1066-1073, Aug. 2005.
    [E8] S. Moo, K. S. Ng and J. S. Hu, “Operation of battery power modules with series output,” in Proc. IEEE ICIT conf., 2009, pp. 1-6.
    [E9] Y. S. Lee, and M. W. Cheng, “Intelligent control battery equalization for series connected lithium-ion battery strings,” IEEE Trans. Ind. Electron., vol. 52, no. 5, pp. 1297-1307, Oct. 2005.
    [E10] H. Kim, H. S. Park and G. W. Moon, “A modularized two-stage charge equalization converter for series connected lithium-ion battery strings in an HEV,” in Proc. IEEE PESC, June 2008, pp. 992-997.
    [E11] J. Patterson and R. Zane, “Series input modular architecture for driving multiple LEDs,” in Proc. IEEE PESC, June 2008, pp. 2650-26568.
    [E12] G. Garcera, M. Pascual, and E. Figueres, “Robust average current-mode control of multimodule parallel dc-dc PWM converter systems with improved dynamic response,” IEEE Trans. Ind. Electron., vol. 48, no. 5, pp. 995-1005, Oct. 2001.
    [E13] S. K. Mazumder, M. Tahir, and K. Acharya, “Master-slave current-sharing control of a parallel dc-dc converter system over an RF communication interface,” IEEE Trans. Ind. Electron., vol. 55, no. 1, pp. 59-66, Jan. 2008.
    [E14] J. Sun, M. Xu, Y. Ren and F. C. Lee, “Light-load efficiency improvement for buck voltage regulators,” IEEE Tran. Power Electron., vol. 24, no. 3, pp. 742-751, March 2009.
    [E15] H. Li, H. Gan and J. Ying, “High active mode efficiency switching mode power supply,” in Proc. IEEE APEC, Feb. 2008, pp.715-721.
    [E16] W. A. Tabisz, M. M. Jovanovic and F. C. Lee, “Present and future of distributed power system,” in Proc. APEC, 1992, pp.11-18.
    [E17] P. Thounthong, B. Davat, S. Raël, and P. Sethakul, “Fuel cell high-power applications,” IEEE Trans. Ind. Electron., vol. 3, no. 1, pp. 32-46, March 2009.
    [E18] I. Batarseh, K. Siri and H. Lee, “Investigation of the output droop characteristics of parallel-connected DC-DC converter,” in Proc. PESC, 1994, pp. 1342-1351.
    [E19] B. T. Irving and M. M. Jovanovic, “Analysis, design and performance evaluation of droop current-sharing method,” in Proc. APEC, 2000, pp. 235-241.
    [E20] J. S. Glaser and A. F. Witulski “Output plane analysis of load-sharing in multiple-module converter systems,” IEEE Trans. Power Electron., vol. 9, no.1, pp. 43-50, Jan. 1994.
    [E21] H. Tanaka, “Method for centralized voltage control and balancing for parallel operation of power supply equipment,” in Proc. INTELEC, 1988, pp. 434-440.
    [E22] R. L. Lin and H. D. Lin, “Current-equalization techniques for electronic ballasts,” IEEE Trans. Power Electron., vol. 22, no. 3, pp. 824-830, May 2007.
    [E23] Román, R. Alonso, P. Ibañez, S. Elorduizapatarietxe, and D. Goitia, “Intelligent PV module for grid-connected PV system,” IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1066-1073, Aug. 2005.
    [E24] J. Hwang and A. Chee, “Improving efficiency of a pre-/post-switching regulator (PFC/PWM) at light loads using green-mode function,” in Proc. IEEE APEC, Feb 1998, vol. 2, pp. 669-675.

    下載圖示 校內:2014-01-11公開
    校外:2016-01-11公開
    QR CODE