| 研究生: |
蔡家逢 Tasi, Chia-Feng |
|---|---|
| 論文名稱: |
x(Mg0.95Zn0.05)TiO3-(1-x)Ca0.6Nd0.8/3TiO3陶瓷介電特性改善及微波元件之應用 Improved Dielectric Properties of xMg0.95Zn0.05TiO3-(1-x)Ca0.6Nd0.8/3TiO3 Ceramics and Application of Microwave Devices |
| 指導教授: |
黃正亮
Huang, Cheng-Liang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 介電陶瓷 、微波介電 |
| 外文關鍵詞: | dielectric creamic, micowave dielectric |
| 相關次數: | 點閱:75 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文中將討論x(Mg0.95Zn0.05)TiO3-(1-x)Ca0.6Nd0.8/3TiO3系統以0.8Mg0.95Zn0.05TiO3-0.2Ca0.6Nd0.8/3TiO3摻雜不同含量V2O5、B2O3燒結促進劑之微波介電特性及微結構。由實驗發現,
x(Mg0.95Zn0.05)TiO3-(1-x)Ca0.6Nd0.8/3TiO3系統調整適合的x值,可以使其頻率溫度漂移係數降至趨近於零,除此之外,燒結溫度也較(Mg0.95Zn0.05)TiO3為低;適量的燒結促進劑V2O5、B2O3,亦能有效的降低
0.8(Mg0.95Zn0.05)TiO3-0.2Ca0.6Nd0.8/3TiO3的燒結溫度。
The microwave dielectric properties and the microstructures of the x(Mg0.95Zn0.05)TiO3-(1-x)Ca0.6Nd0.8/3TiO3 system and 0.8(Mg0.95Zn0.05)TiO3-0.2Ca0.6Nd0.8/3TiO3 adding different amount of sintering aids V2O5,B2O3 have been discussed in this paper. The results show that appropriately adjusting the x value ,zero τf value can be obtained in the x(Mg0.95Zn0.05)TiO3-(1-x)Ca0.6Nd0.8/3TiO3 system,and the sintering temperature would be lower than pure(Mg0.95Zn0.05)TiO3 ceramics.Adding sintering aids V2O5,B2O3 can also lower the sintering temperature of 0.8Mg0.95Zn0.05TiO3-0.2Ca0.6Nd0.8/3TiO3.
A bandpass filter of center frequency at 4GHz have been designed in this paper,and based on a new type of slotted microstrip resonator, with FR4、Al2O3、and 0.8(Mg0.95Zn0.05)TiO3-0.2Ca0.6Nd0.8/3TiO3+1wt% V2O5 substrates. And we compared the result of the simulation with the result of the measurement of the performance.
參考文獻
[1]C.-L Hung and S. -H Liu,”Characterization of Extremely Low Loss Dielectric
(Mg0.95Zn0.05)TiO3 at Microwave Frequency” submitted to Materials letter.
[2]M. Yoshida, N. Hara, T. Takada, and A. Seki, ”structure and dielectric
properties of CaNdTiO3” Materials Resrarch Bulletin 36(2001) 2741-2750.
[3]D.M.Pozar, Microwave Engineering, New York: John Wiley & Sons,2ndEd.,1998..
[4]G. L. Mattaei, L. Young, and E. M. T. Jones, Microwave Filter, Impedance
Matching Networks, and Coupling Structures. New York: McGraw-Hill, 1964.
[5]J. S. Hong and M. J. Lancaster, Microstrip Filter for RF/Microwave
Applications. New York: John & Sons,2001.
[6]黃維鼎, 使用堆疊溝槽式共振腔設計新型微小化微帶線通帶濾波器, 國立交通大學碩
士論文(2003)
[7]邱碧秀,電子陶瓷材料,徐氏基金會出版,中華民國,1997。
[8]W. J. Huppmann, and G. Petzow, Sintering processes., New York: Plenum
Press, pp.189-202, 1979.
[9] V. N. Eremenko, Y. V. Naidich, and I. Aienko, Liquid phase sintering, New
York: Consultants Bureau, 1970, ch.
[10]K. S. Hwang, Phd. Thesis, Rensselaer Ploytechnic in Troy(1984).
[11]J. W. Cahn, and R. B. Heady, “Analysis of capillary forces in liquid-
phases-intering of jagged particles,” J. Am. Ceram. Soc, vol. 53,
pp.406-409, Jul. 1970.
[12]W. J. Huppmann, and G. Petzow, Ber. bunnsenges phys. chem., 82, pp. 308,
1978.
[13]R. M. German, Liquid phase sintering., New York: Plenum Press, 1985, ch. 4.
[14]J. H. Jean, and C. H. Lin, “Coarsening of tungsten particles in W-Ni-Fe
allo-ys,” J. Mater. Sci., vol. 24, pp. 500-504, Feb. 1989.
[15]L. H. Hieh, K. Chang, ”Equivalent lump element G,L,C,and unloaded Q’s of
closed-and-open loop ring resonators.” IEEE trans on Microwave Theory
Tech, vol50,No2, Feb 2002.
[16]K. C. Gupta, R. Garg, I. Bahl, and E. Bhartis, Microstrip lines and
slotlines, second edition., Boston: Artech House, 1996.
[17]E. O. Hammerstard, in Proceedings of the european microwave conference,
pp. 268-272, 1975.
[18]E. J. Denlinger,“Losses of microstrip lines,”IEEE. Trans. Microwave
Theory Tech., vol. MIT-28, pp. 513–522, Jun. 1980.
[19]R. A. Pucel, D. J. Masse, and C. E Hartwig, “Losses in microstrip,”
IEEE. Trans. Microwave Theory Tech., vol. MIT-16, pp. 342-350, Jun. 1968.
[20]G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave filters impedance-
mattching, networks, and coupling structures., New York: McGraw-Hill,1980.
[21]V. Nalbandian, and W. Steenart,“Discontinunity in symmetric striplines
due to impedance step and their compensations,”IEEE Trans. Microwave
Theory Te- ch., vol. MTT-20, pp. 573-578, Sep. 1980.
[22]張盛富,戴明鳳,無線通信之射頻被動電路設計,全華出版社,1998.
[23]J. S. Wong,“Microstrip tapped-line filter design,”IEEE Trans.Microwave
Theorv Tech,Vol. 27, No. 1, pp.44-50 January 1979.
[24]J. -T. Kuo and E. Shih,“Microstrip stepped impedance resonator bandpass
filters with an extended optimal rejection bandwidth,”IEEE Microwave
Theory Tech, May 2003, pp.1554-1559.
[25]E. Shih and J.-T. Kuo, ”A new compact microstrip stacked-SIR bandpass
filter with transmission zeros ” to be presented in IEEE MTT-S,
Philadelphia Pennsylvania, June 2003.
[26]B. W. Hakki, and P. D. Coleman,“A dielectric resonator method of
measureng inductive capacities in the millimeter range,” IEEE. Trans.
Microwave Theory Tech,vol. MTT-8, pp. 402-410, 1960.
[27]W. E. Courtney,“Analysis and evaluation of a method of measuring the com-
plex permittivity and permeability of microwave insulators,”IEEE. Trans.
Mi-crowave Theory Tech, vol. MTT-18, pp. 476-485, Aug. 1970.
[28]Y. Kobayashi, and N. Katoh, “Microwave measurement of dielectric
properties of low-loss materials by dielectric rod resonator method,”
IEEE Trans. Microwave Theory Tech, vol. MTT-33, pp. 586-592, 1985.
[29]Y. Kobayashi, and S. Tanaka, "Resonant modes of a dielectric resonator
short-circuited at both ends by parallel conducting plates," IEEE. Trans.
Microwave Theory Tech, vol. MTT-28, pp. 1077-1085, 1980.
[30]P. Wheless, and D. Kajfez “The use of higher resonant modes in measuring
the dialectric constant of Dielectric Resonators,”IEEE MTT-S Symposium
Dig, pp. 473-476, 1985.