簡易檢索 / 詳目顯示

研究生: 蔡家逢
Tasi, Chia-Feng
論文名稱: x(Mg0.95Zn0.05)TiO3-(1-x)Ca0.6Nd0.8/3TiO3陶瓷介電特性改善及微波元件之應用
Improved Dielectric Properties of xMg0.95Zn0.05TiO3-(1-x)Ca0.6Nd0.8/3TiO3 Ceramics and Application of Microwave Devices
指導教授: 黃正亮
Huang, Cheng-Liang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 87
中文關鍵詞: 介電陶瓷微波介電
外文關鍵詞: dielectric creamic, micowave dielectric
相關次數: 點閱:75下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文中將討論x(Mg0.95Zn0.05)TiO3-(1-x)Ca0.6Nd0.8/3TiO3系統以0.8Mg0.95Zn0.05TiO3-0.2Ca0.6Nd0.8/3TiO3摻雜不同含量V2O5、B2O3燒結促進劑之微波介電特性及微結構。由實驗發現,
    x(Mg0.95Zn0.05)TiO3-(1-x)Ca0.6Nd0.8/3TiO3系統調整適合的x值,可以使其頻率溫度漂移係數降至趨近於零,除此之外,燒結溫度也較(Mg0.95Zn0.05)TiO3為低;適量的燒結促進劑V2O5、B2O3,亦能有效的降低
    0.8(Mg0.95Zn0.05)TiO3-0.2Ca0.6Nd0.8/3TiO3的燒結溫度。

    The microwave dielectric properties and the microstructures of the x(Mg0.95Zn0.05)TiO3-(1-x)Ca0.6Nd0.8/3TiO3 system and 0.8(Mg0.95Zn0.05)TiO3-0.2Ca0.6Nd0.8/3TiO3 adding different amount of sintering aids V2O5,B2O3 have been discussed in this paper. The results show that appropriately adjusting the x value ,zero τf value can be obtained in the x(Mg0.95Zn0.05)TiO3-(1-x)Ca0.6Nd0.8/3TiO3 system,and the sintering temperature would be lower than pure(Mg0.95Zn0.05)TiO3 ceramics.Adding sintering aids V2O5,B2O3 can also lower the sintering temperature of 0.8Mg0.95Zn0.05TiO3-0.2Ca0.6Nd0.8/3TiO3.
    A bandpass filter of center frequency at 4GHz have been designed in this paper,and based on a new type of slotted microstrip resonator, with FR4、Al2O3、and 0.8(Mg0.95Zn0.05)TiO3-0.2Ca0.6Nd0.8/3TiO3+1wt% V2O5 substrates. And we compared the result of the simulation with the result of the measurement of the performance.

    目錄 第一章 緒論..................................................................1 1-1 前言 .....................................................................1 1-2 研究目的.................................................................1 第二章 介電材料原理..........................................................2 2-1 介電材料的微波電性需求...........................................2 2-2 介電理論.........................................................2     2-3 介電共振器原理...................................................4 2-4 鈦鐵礦與鈣鈦礦之結構.............................................5 2-4-1 鈦鐵礦之結構...................................................5 2-4-2 鈣鈦礦之結構...................................................6 2-5 燒結理論.................................................................8 2-5-1 液相燒結...............................................................9 第三章 濾波器電路原理.......................................................10 3-1 集總元件濾波器簡介..............................................10 3-2 步階阻抗共振器(SIR)與均勻阻抗共振器(UIR)比較....................11 3-3 共振腔特性分析..................................................12 3-4 共振腔Qsi值計算.................................................13 3-5 微帶線各項公式與考量............................................16 3-5-1 微帶線各項參數公式計算........................................16 3-5-2 微帶線各項考量................................................19 第四章 實驗程序.............................................................23 4-1 微波介電材料的製備......................................................23 4-1-1 x(Mg0.95Zn0.05)TiO3-(1-x)Ca0.6Nd0.8/3TiO3之製程.......................23 4-1-2 0.8(Mg0.95Zn0.05)TiO3-0.2Ca0.6Nd0.8/3TiO3添加燒結促進劑之製程.........24 4-2 微波特性的量測與特性分析................................................24 4-2-1 微波特性之量測........................................................24 4-2-1-1 介電係數之量測......................................................25 4-2-1-2 Qd值之測量..........................................................26 4-2-1-3 頻率溫度係數之測量..................................................28 4-2-2 X-Ray分析.............................................................29 4-2-3 掃瞄式電子顯微鏡分析..................................................29 4-2-4 密度之量測............................................................30 4-3 濾波器的製作與量測......................................................30 4-3-1 濾波器的規格..........................................................30 4-3-2 濾波器的設計..........................................................31 4-3-3 濾波器的實作..........................................................32 4-3-4 濾波器特性量測........................................................32 第五章 實驗結果與討論.......................................................33 5-1 x(Mg0.95Zn0.05)TiO3-(1-x)Ca0.6Nd0.8/3TiO3陶瓷介電特性探討...............33 5-2 0.8(Mg0.95Zn0.05)TiO3-0.2Ca0.6Nd0.8/3TiO3添加燒結促進劑V2O5.............34 5-3 0.8(Mg0.95Zn0.05)TiO3-0.2Ca0.6Nd0.8/3TiO3添加燒結促進劑B2O3.............36 5-4 濾波器特性探討..........................................................37 第六章 結論.................................................................41 參考文獻.....................................................................43 圖目錄 圖2-1 四種極化機構之示意圖..................................................46 圖2-2 極化頻率分佈圖........................................................46 圖2-3 電磁波由介質1(ε1,μ1)入射到介質2(ε2,μ2)...............................47 圖2-4 電磁波入射介電陶瓷關係圖..............................................47 圖2-5 鈦鐵礦結構............................................................48 圖2-6 鈣鈦礦結構............................................................48 圖2-7 週期表上適合鈣鈦礦結構之元素..........................................49 圖3-1 三種濾波器的低通原型圖 (a) Butterworth Filter (b) Chebyshev Filter (c) Elliptic Function Filter............................50 圖3-2 SIR的基本結構.........................................................51 圖3-3 SIR阻抗比對電器長度影響...............................................51 圖3-4 UIR與SIR..............................................................51 圖3-5 溝槽式共振腔..........................................................52 圖3-6 計算共振頻的等效電路圖................................................52 圖3-7 奇模共振的等效電路圖..................................................52 圖3-8 偶模共振的等效電路圖..................................................53 圖3-9 溝槽式共振腔共振頻與結構參數的關係圖..................................53 圖3-10 饋入點在高阻抗區的共振腔電路圖.......................................54 圖3-11 饋入點在高阻抗區的共振腔等效示意圖...................................54 圖3-12 饋入點在高阻抗區的共振腔等效ABCD參數圖...............................55 圖3-13 溝槽式共振腔饋入點位置與品質常數關係圖...............................55 圖3-14 步階阻抗不連續處之示意圖(a)實際結構(b)等效電路...................56 圖3-15 微帶線開路端效應(a)微帶線開路端圖(b)等效邊緣電容之等效電路圖     (c)等效延伸傳輸線....................................................56 圖3-16 直角彎折效應之結構圖與等效電路圖.....................................56 圖4-1 實驗流程圖............................................................57 圖4-2 (a)測量介電常數系統圖(b)測量品質因數值系統圖..........................58 圖4-3 介質儀及同軸線耦合電路................................................59 圖4-4 濾波器佈局圖..........................................................59 圖5-1(a) 0.7MZT-0.3CNdT X-Ray圖.............................................60 圖5-1(b) 0.8MZT-0.2CNdT X-Ray圖.............................................60 圖5-1(c) 0.85MZT-0.15CNdT X-Ray圖...........................................61 圖5-1(d) 0.9MZT-0.1CNdT X-Ray圖.............................................61 圖5-2(a) 0.7MZT-0.3CNdT不同燒結溫度之SEM圖..................................62 圖5-2(b) 0.8MZT-0.2CNdT不同燒結溫度之SEM圖..................................63 圖5-2(c) 0.85MZT-0.15CNdT不同燒結溫度之SEM圖................................64 圖5-2(d) 0.9MZT-0.1CNdT不同燒結溫度之SEM圖..................................65 圖5-3 xMZT-(1-x)CNdT視密度與燒結溫度關係圖..................................66 圖5-4 xMZT-(1-x)CNdT介電常數與燒結溫度關係圖................................66 圖5-5 xMZT-(1-x)CNdT品質因數與與燒結溫度關係圖..............................67 圖5-6 xMZT-(1-x)CNdT共振頻率溫度飄移係數與燒結溫度關係圖....................67 圖5-7(a) 添加0.5 wt% V2O5 的X-Ray圖.........................................68 圖5-7(b) 添加1 wt% V2O5 的X-Ray圖...........................................68 圖5-7(c) 添加2 wt% V2O5 的X-Ray圖...........................................69 圖5-7(d) 添加4 wt% V2O5 的X-Ray圖...........................................69 圖5-8(a) 添加0.5 wt% V2O5不同燒結溫度之SEM圖................................70 圖5-8(b) 添加1 wt% V2O5不同燒結溫度之SEM圖..................................71 圖5-8(c) 添加2 wt% V2O5不同燒結溫度之SEM圖..................................72 圖5-8(d) 添加4 wt% V2O5不同燒結溫度之SEM圖..................................73 圖5-9 添加不同量V2O5之視密度與燒結溫度關係..................................74 圖5-10 添加不同量V2O5之介電常數與燒結溫度關係圖.............................74 圖5-11 添加不同量V2O5的之品質因數與燒結溫度關係圖...........................75 圖5-12 添加不同量V2O5之共振頻率溫度飄移係數與燒結溫度關係圖.................75 圖5-13(a) 添加0.5 wt% B2O3 的X-Ray圖........................................76 圖5-13(b) 添加1 wt% B2O3 的X-Ray圖..........................................76 圖5-13(c) 添加2 wt% B2O3 的X-Ray圖..........................................77 圖5-13(d) 添加4 wt% B2O3 的X-Ray圖..........................................77 圖5-14(a) 添加0.5 wt% B2O3不同燒結溫度之SEM圖...............................78 圖5-14(b) 添加1 wt% B2O3不同燒結溫度之SEM圖.................................79 圖5-14(c) 添加2 wt% B2O3不同燒結溫度之SEM圖.................................80 圖5-14(d) 添加4 wt% B2O3不同燒結溫度之SEM圖.................................81 圖5-15 添加不同量B2O3之視密度與燒結溫度關係.................................82 圖5-16 添加不同量B2O3之介電常數與燒結溫度關係圖.............................82 圖5-17 添加不同量B2O3的之品質因數與燒結溫度關係圖...........................83 圖5-18 添加不同量B2O3之共振頻率溫度飄移係數與燒結溫度關係圖.................83 圖5-19 FR4基板之模擬圖......................................................84 圖5-20 FR4基板之實際量測圖..................................................84 圖5-21 Al2O3基板之模擬圖....................................................85 圖5-22 Al2O3基板之實際量測圖................................................85 圖5-23 0.8MZT+0.2CNdT基板之模擬圖...........................................86 圖5-24 0.8MZT+0.2CNdT基板之實際量測圖.......................................86 圖5-25 實作基板照片(a)FR4(b) Al2O3 (c) 0.8MZT+0.2CNdT.......................87

    參考文獻
    [1]C.-L Hung and S. -H Liu,”Characterization of Extremely Low Loss Dielectric
    (Mg0.95Zn0.05)TiO3 at Microwave Frequency” submitted to Materials letter.
    [2]M. Yoshida, N. Hara, T. Takada, and A. Seki, ”structure and dielectric
    properties of CaNdTiO3” Materials Resrarch Bulletin 36(2001) 2741-2750.
    [3]D.M.Pozar, Microwave Engineering, New York: John Wiley & Sons,2ndEd.,1998..
    [4]G. L. Mattaei, L. Young, and E. M. T. Jones, Microwave Filter, Impedance
    Matching Networks, and Coupling Structures. New York: McGraw-Hill, 1964.
    [5]J. S. Hong and M. J. Lancaster, Microstrip Filter for RF/Microwave
    Applications. New York: John & Sons,2001.
    [6]黃維鼎, 使用堆疊溝槽式共振腔設計新型微小化微帶線通帶濾波器, 國立交通大學碩
    士論文(2003)
    [7]邱碧秀,電子陶瓷材料,徐氏基金會出版,中華民國,1997。
    [8]W. J. Huppmann, and G. Petzow, Sintering processes., New York: Plenum
    Press, pp.189-202, 1979.
    [9] V. N. Eremenko, Y. V. Naidich, and I. Aienko, Liquid phase sintering, New
    York: Consultants Bureau, 1970, ch.
    [10]K. S. Hwang, Phd. Thesis, Rensselaer Ploytechnic in Troy(1984).
    [11]J. W. Cahn, and R. B. Heady, “Analysis of capillary forces in liquid-
    phases-intering of jagged particles,” J. Am. Ceram. Soc, vol. 53,
    pp.406-409, Jul. 1970.
    [12]W. J. Huppmann, and G. Petzow, Ber. bunnsenges phys. chem., 82, pp. 308,
    1978.
    [13]R. M. German, Liquid phase sintering., New York: Plenum Press, 1985, ch. 4.
    [14]J. H. Jean, and C. H. Lin, “Coarsening of tungsten particles in W-Ni-Fe
    allo-ys,” J. Mater. Sci., vol. 24, pp. 500-504, Feb. 1989.
    [15]L. H. Hieh, K. Chang, ”Equivalent lump element G,L,C,and unloaded Q’s of
    closed-and-open loop ring resonators.” IEEE trans on Microwave Theory
    Tech, vol50,No2, Feb 2002.
    [16]K. C. Gupta, R. Garg, I. Bahl, and E. Bhartis, Microstrip lines and
    slotlines, second  edition., Boston: Artech House, 1996.
    [17]E. O. Hammerstard, in Proceedings of the european microwave conference,
    pp. 268-272, 1975.
    [18]E. J. Denlinger,“Losses of microstrip lines,”IEEE. Trans. Microwave
    Theory Tech., vol. MIT-28, pp. 513–522, Jun. 1980.
    [19]R. A. Pucel, D. J. Masse, and C. E Hartwig, “Losses in microstrip,”
    IEEE. Trans. Microwave Theory Tech., vol. MIT-16, pp. 342-350, Jun. 1968.
    [20]G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave filters impedance-
    mattching, networks, and coupling structures., New York: McGraw-Hill,1980.
    [21]V. Nalbandian, and W. Steenart,“Discontinunity in symmetric striplines
    due to impedance step and their compensations,”IEEE Trans. Microwave
    Theory Te- ch., vol. MTT-20, pp. 573-578, Sep. 1980.
    [22]張盛富,戴明鳳,無線通信之射頻被動電路設計,全華出版社,1998.
    [23]J. S. Wong,“Microstrip tapped-line filter design,”IEEE Trans.Microwave
    Theorv Tech,Vol. 27, No. 1, pp.44-50 January 1979.
    [24]J. -T. Kuo and E. Shih,“Microstrip stepped impedance resonator bandpass
    filters with an extended optimal rejection bandwidth,”IEEE Microwave
    Theory Tech, May 2003, pp.1554-1559.
    [25]E. Shih and J.-T. Kuo, ”A new compact microstrip stacked-SIR bandpass
    filter with transmission zeros ” to be presented in IEEE MTT-S,
    Philadelphia Pennsylvania, June 2003.
    [26]B. W. Hakki, and P. D. Coleman,“A dielectric resonator method of
    measureng inductive capacities in the millimeter range,” IEEE. Trans.
    Microwave Theory Tech,vol. MTT-8, pp. 402-410, 1960.
    [27]W. E. Courtney,“Analysis and evaluation of a method of measuring the com-
    plex permittivity and permeability of microwave insulators,”IEEE. Trans.
    Mi-crowave Theory Tech, vol. MTT-18, pp. 476-485, Aug. 1970.
    [28]Y. Kobayashi, and N. Katoh, “Microwave measurement of dielectric
    properties of low-loss materials by dielectric rod resonator method,”
    IEEE Trans. Microwave Theory Tech, vol. MTT-33, pp. 586-592, 1985.
    [29]Y. Kobayashi, and S. Tanaka, "Resonant modes of a dielectric resonator
    short-circuited at both ends by parallel conducting plates," IEEE. Trans.
    Microwave Theory Tech, vol. MTT-28, pp. 1077-1085, 1980.
    [30]P. Wheless, and D. Kajfez “The use of higher resonant modes in measuring
    the dialectric constant of Dielectric Resonators,”IEEE MTT-S Symposium
    Dig, pp. 473-476, 1985.

    下載圖示 校內:2007-06-22公開
    校外:2007-06-22公開
    QR CODE