簡易檢索 / 詳目顯示

研究生: 郭怡欣
Kuo, Yi-Hsin
論文名稱: 電子商務經驗對行動商務使用意圖之影響-以服飾業為例
The Influence of E-commerce Experience on Future Usage Intention of M-commerce -Take On-line Apparel Industry for Example
指導教授: 張淑昭
Chang, Su-Chao
共同指導教授: 黃瀞瑩
Huang, Ching-Ying
學位類別: 碩士
Master
系所名稱: 管理學院 - 企業管理學系
Department of Business Administration
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 67
中文關鍵詞: 電子商務行動商務沉浸理論滿意度
外文關鍵詞: E-commerce, M-commerce, Flow theory, Satisfaction
相關次數: 點閱:104下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 過去人們依賴電腦,由於科技的進步,現在人們日趨依賴行動裝置,也因為這個原因,新的交易型態開始出現。從過往的電子商務,到現在逐漸新興的行動商務。因此,若要在網路的世界裡經營成功,則必須更了解新的網路交易模式、消費者型態等。
    本研究主要針對電子商務及行動商務的領域。根據過去資料顯示,在許多國家,人們常常使用網路購買書籍、服飾等等。此研究將研究領域縮小至網路服飾產業,其原因為,本研究主要探討過去的電子商務經驗的滿意度,是否為影響其未來行動商務的使用意圖,而服飾可以牽涉的面相較多也較個人,因此對於研究滿意度會有較顯著的結果。
    為了找出過去的電子商務經驗是否會影響未來使用行動商務的意圖,本研究以網路問卷實驗設計為主,紙本問卷為輔,針對台灣區的網路服飾消費者共419名隨機抽樣做研究調查,本研究結果發現三點行銷人員所必須了解的重要意涵。
    第一點,沉迷理論對於電子商務的態度有正向影響的。當消費者使用網路購買服飾時,越專心、獲得越多愉悅感及控制感時,將會對電子商務持有正面的態度。第二點,若消費者對電子商務持有正面的態度,未來越有可能再次行用行動商務,反之亦然。第三點,消費者過去使用網路購買服飾的滿意度,對未來是否會繼續使用行動商務的意圖,並沒有顯著的效果。

    People tend to rely on the internet during the past. However, with the advancement of technology, people now rely on mobile device. Due to this reason, new types of commerce occurred, from E-commerce to M-commerce. If managers want to run business successfully in the internet, they have to realize new types of commerce and consumers’ behaviors.
    This research aims at E-commerce and M-commerce. According to the past surveys, consumers got used to purchase books or apparel online. This research limits the industry in online apparel. The purpose of this research is to discuss whether past experience of E-commerce affect future usage intention of M-commerce or not. Consequently, focusing on online apparel would have more significant results compared with book industry.
    In order to figure out whether past experience on E-commerce would affect future usage intention of M-commerce or not; this research mainly conducts internet-based experimental design and paper-based in Taiwan, and the results show some significant managerial implications.
    First, flow theory has positive effect on attitude toward E-commerce. When consumers purchase clothing online, if they concentrate and perceive more enjoyment and control, it is more likely that they have positive attitude toward E-commerce. Secondly, if consumers possess positive attitude toward E-commerce, they would use M-commerce channel in the future. Third, the past experience of E-commerce has no significant effect on the future usage intention of M-commerce.

    Content 摘要 I Abstract II 致謝 III Content IV List of Table V List of Figure VII Chapter 1- Introduction 1 1.1. Background 1 1.2. Research Questions and Objectives 6 1.3. Outline of the Study 9 Chapter 2-Literatures Review 11 2.1. Flow Theory 12 Table 2-1 Characteristics of Flow 13 2.1.1. Perceived Enjoyment 13 2.1.2. Perceived Control 14 2.1.3. Concentration 14 2.2. Attitude toward E-commerce 15 2.3. Satisfaction of Online Shopping Experience 16 2.4. Future Usage Intention of M-commerce 17 Chapter 3-Research Method 18 3.1. Research model 18 3.1.1. Flow Theory and Attitude toward E-commerce 19 3.1.2 Attitude toward E-commerce and Future Usage Intention of M-commerce 21 3.1.3. Satisfaction of Online Shopping Experience and Future Usage Intention of M-commerce 22 3.2. Questionnaire Design and Sample Selection 24 3.3. Measurement 24 3.3.1. Perceived Enjoyment 24 3.3.2. Perceived Control 24 3.3.3. Concentration 25 3.3.4. Satisfaction of Online Shopping Experience 25 3.3.5. Attitude toward E-commerce: 26 3.3.6. Future Usage Intention of M-commerce 26 3.4. Pilot Test 26 Chapter 4-Results 33 4.1 Data Collection and Demographics Analysis 33 4.2 Measurement Model Analysis 37 4.2.1 Formal Questionnaire Reliability Analysis 37 4.2.2. Formal Questionnaire Validity Analysis 40 4.2.3 Confirmatory Factor Analysis (CFA) 44 4.2.4 Convergent Validity and Discriminant Validity Analysis 47 4.3 Hypotheses Testing 49 4.3.1 Structural Model Analysis 49 4.3.2 Summary of Hypotheses Testing 50 Chapter 5-Conclusion and Recommendation 54 5.1 Discussions 54 5.1.1 The Effect of Flow Theory on the Attitude toward E-commerce 55 5.1.2 The Effect of Attitude toward E-commerce on the Future Usage Intention of M-commerce. 56 5.1.3 The Effect of Satisfaction of Online Shopping Experience on the Future Usage Intention of M-commerce. 56 5.2 Managerial Implication 57 5.3 Limitations and Recommendation for Future Research 59 Reference 61 Appendix: Questionnaire 67

    Agarwal, R., & Karahanna, E. (2000). Time flies when you're having fun: cognitive
    absorption and beliefs about information technology usage 1. MIS quarterly, 24(4), 665-694.
    Ajzen, I. (1941). The theory of planned behavior. Organ. Behavior and Human Decision Processes 50(2) 179-211.
    Ajzen, I., Fishbein, M., (1980). Understanding Attitudes and Predicting Social
    Behavior. Prentice-Hall Inc., Englewood Cliffs, NJ.
    Anderson, R. E. (1973). Consumer dissatisfaction: The effect of disconfirmed
    expectance on perceived product performance. J. Marketing Res. 10(1) 38–44.
    Atkinson, J. W. (1964). An Introduction to Motivation. Van Nostrand, Princeton,
    NJ.
    Bandura, A. (1982). Self-efficacy mechanism in human agency. Amer. Psychologist 37(2) 122-147.
    Bhattacherjee, A. (2001). An empirical analysis of the antecedents of electronic commerce service continuance. Decision Support Systems 32(2) 201–214.
    Bhattacherjee, A. (2000). "Acceptance of e-commerce services: the case of electronic brokerages," IEEE Transactions on Systems, Man and Cybernetics, Part A, vol. 30, no. 4, pp. 411-420.
    Brown, S. A., Chervany, N. L., & Reinicke, B. A. (2007). What matters when introducing new information technology. Communications of the ACM, 50(9), 91–96.
    Bruner, G. C., Kumar, A., (2005). ”Explaining consumer acceptance of handheld
    Internet devices”. Journal of Business Research.Vol. 58, nº 5, pp. 553-558.
    Bucklin, Louis P. (1972). Competition and Evolution in the Distributive Trades.
    Prentice-Hall, Englewood Cliffs, NJ.
    Campell, D. T., & Fiske, D. W. (1959). Convergent and discriminant validation by the multitrait-multimethod matrix. Psychological Bulletin, 56, 81-105
    Chang, M. K., W. Cheung. (2001). Determinants of the intention to use
    internet/WWW at work: A confirmatory study. Inform. Management 39(1) 1–14.
    Chen, K., Yen, D.C., Hung, S-Y. and Huang, A.H. (2008) ‘An exploratory study of the selection of communication media: the relationship between flow and communication outcomes’, Decision Support Systems, Vol. 45, No. 4, pp.822–832.
    Child, D. (1990). The essentials of factor analysis, second edition. London: Cassel
    Educational Limited.
    Cotlier, Moira (2000), “Wide wireless world”, Catalog Age; New Canaan; Dec 2000, pp.16-17
    Coughlanet, Anne T., E. Anderson, L. Stern, A. El-Ansary. (2001). Marketing Channels. Prentice Hall, Upper Saddle River, NJ.
    Cronbach, L. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16(3), 297-334.
    Csikszentmihalyi, M. and Csikszentmihalyi, I.S. (1988) Optimal Experience: Psychological Studies of Flow in Consciousness, Cambridge University Press, Cambridge.
    Davis, F. D., R. P. Bagozzi, and P. R. Warshaw (1992) "Extrinsic and intrinsic motivation to use computers in the workplace," Journal of Applied Social Psychology (22pp. 1111-1132.
    Devaraj, Sarv, Ming, Fan, & Kohli, Rajiv. (2002). Antecedents of B2C Channel Satisfaction and Preference: Validating e-Commerce Metrics. Information Systems Research, 13(3), 316-333.
    Durlacher Research Ltd. (2000). Mobile commerce report. Retrieved from www.
    durlacher.com
    Engel, J. E., Roger D. Blackwell, Paul W. Miniard, (1990). Consumer Behavior. Dryden Press, Chicago, IL.
    Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research 18(1), 39-50.
    Fox, Justin (2000), “A river of money will flow through the wireless Web in coming years. All the big players want is a piece of the action”, Fortune; New York; Oct 9,2000; Vol. 142, No.8, pp. 140-146
    Geyskens, I., Jbem Steenkamp. (2000). Economic and social satisfaction:
    Measurement and relevance to marketing channel relationships. J.Retailing 76(1) 11–32.
    Geyskens, I., Jbem Steenkamp., N. Kumar. (1999). A meta-analysis of satisfaction in marketing channel relationships. J.Marketing Res. 36(2) 223–238.
    Geyskens, I., Jbem Steenkamp., M. Boudreau. (1999). A meta-analysis of satisfaction in marketing channel relationships. J.Marketing Res. 36(2) 223–238.
    Ghani, J. (1995). Flow in human computer interactions: Test of a model. New Jersey:Ablex Publishing Corp.
    Ghani, Jawaid A., Roberta Supnick, Pamela Rooney. (1991). The experience of flow in computer-mediated and in face-to-face groups. J. 1. DeGross, I. Benbasat, G. DeSanctis, and C. M. Beath, eds. Proc. 12th Internat. Conf. Inform. Systems, New York, 229-237.
    Ghosh, A.K. and Sawinatha, T.M. (2000) ‘Software security and privacy risks in mobile e-commerce’, Communications of The ACM, Vol. 44, No. 2, February, pp.51-57.
    Guo, Y.M. & Klein, B.D. (2009) ‘Beyond the test of the four channel model of flow in the context of online shopping’, Communications of the AIS, Vol. 24, pp.837–856.
    Guo, Y. M., & Poole, M. S. (2009). Antecedents of flow in online shopping: a test of alternative models. Information Systems Journal, 19(4), 369-390.
    Hair, J. F., Anderson, R. E., Tatham, R. L., & Black, W. C. (1998). Multivariate data analysis (5 Ed.): Englewood Cliffs: Prentice Hall.
    Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., & Tatham, R. L. (2006). Multivariate Data Analysis (6 ed.): Upper Saddle River, New Jersey: Pearson Education.
    Harter, Betsy (2000), “Motient’s M-commerce movements”, Wireless Review; Overland Park; Oct 1, 2000; Vol. 17, No. 19, pp. 10-12
    Hasbrouck, J. (1993). Assessing the quality of a security market—A new approach to transaction-cost measurement. Rev.Financial Stud. 6(1) 191–212.
    Heijden, H., (2003). Factors influencing the usage of websites: the case of a generic portal in The Netherlands. Information & Management 40 (6), 541–549.
    Heilman, C. M., D. Bowman, G. P. Wright, (2000). The evolution of brand preferences and choice behaviors of consumers new to a market. J.Marketing Res. 37(2) 139–155.
    Hoffman, D.L. and Novak, T.P. (1996) ‘Marketing in hypermedia computer-mediated environments: conceptual foundations’, Journal of Marketing, Vol. 60, No. 3, pp.50–68.
    Hoffman, Donna L., Thomas P. Novak. 1997. A new marketing paradigm for
    electronic commerce.The Inform. Soc. 13(January-March) 43-54
    Jarvenpaa, S.L., Tractinsky, N., Saarinen, L., (1999). Consumer trust in an
    internet store: a cross-cultural validation. Journal of Computer
    Mediated Communication 5 (2), 1–37.
    Jason J. Zhang , Yufei Yuan, & Norm Archer (2002): Driving Forces for M-Commerce Success, Journal of Internet Commerce, 1:3, 81-104
    Jeong, M., Lambert, C.U., (2001). Adaptation of an information quality framework to measure customers’ behavioural intentions to use lodging Web sites. International Journal of Hospitality Management (20), 129–146.
    Kaiser, H. F. (1974). An Index of Factorial Simplicity, Psychometrics, 39, 31-36.
    Keen, C., Ruyter, K.D., Wetzels, M., andFeinberg, R. (2000). "An Empirical Analysis of Consumer Preferences Regarding Alternative Service Delivery Modes in Emerging Electronic Service Markets," Quarterly Journal of Electronic Commerce, vol. 1, no. 1, pp. 31-47.
    Keen, Peter G.W. (2001), “Go Mobile-Now!”, ComputerWorld; Framingham; Jun 11,2001; Vol.35, No.24, pp. 36
    Kini, R. B., & Thanarithiporn, S. (2004). Mobile commerce and electronic commerce in Thailand: a value space analysis. International Journal of Mobile Communications, 2(1), 22-37.
    Korzaan, M.L., (2003). Going with the flow: prediciting online purchase
    intentions. Journal of Computer Information Systems (Summer), 25–31.
    Koufaris, Marios. (2002). Applying the Technology Acceptance Model and Flow Theory to Online Consumer Behavior. Information Systems Research, 13(2), 205-223.
    Krantz, M. (1998), “Click till you drop”, Time Magazine, Vol. 152 No. 3, pp. 34-7.
    Lee, M.K.O., Cheung, C.M.K., Chen, Z., (2005). Acceptance of internetbased
    learning medium: the role of extrinsic and intrinsic motivation. Information & Management 42 (8), 1095–1104.
    Limayem, M., Khalifa, M., and Frini, A. (2000). "What makes consumers buy from Internet? A longitudinal study of online shopping," IEEE Transactions on Systems, Man & Cybernetics, Part A (Systems & Humans), vol. 30, no. 4, pp. 421-432.
    Lu, J., Yu, C. S., Liu, C., Yao, J.E., (2003), “Technology acceptance model for wireless internet”, Internet Research: Electronics Networking Applications and Policy, Vol. 13 No. 3, pp.206-22.
    Lucas, Peter (2001), “M-commerce gets personal”, Credit Card Management; New York; Apr 2001, Vol. 14, No.1, pp. 24-30
    Maamar, Zakaria. (2003). Commerce, E-Commerce, and M-Commerce: What Comes Next? Communications of the ACM, 46(12), 251-257.
    Mehrabian, Albert, James A. Russel. (1974). An Approach to Environmental Psychology. MIT Press, Cambridge, MA.
    Miller, George A. (1956). The magical number seven, plus or minus two; Some
    limits on our capacity for processing information. Psych. RezK 63(March)
    81-97.
    Moon, J. W., & Kim, Y. G. (2001). Extending the TAM for a World-Wide-Web context. Information & Management, 38(4), 217-230.
    Novak, Thomas P., Donna L. Hoffman, Yiu-Pai Yung. (1998). Modeling the structure of the flow experience among Web users. Ahstr. INFORMS Marketing Sci. Internet Mini-Conf., MIT
    Novak, Thomas P., Donna L. Hoffman, and Yiu-Eai Yung (2000),"Measuring the Customer Experience in Online Environments; A Structural Modeling Approach," Marketing Science,19 (I). 22-42.
    Nysveen, H., Pedersen, P.E., Thorbjornsen, H., (2005), “Intentions to use mobile services: Antecedents and cross-service comparisons”, Journal of the Academy of Marketing Science., 33(3), pp. 330–346.
    Pavlou, P.A., Chai, L., (2002). What drives electronic commerce across cultures? A cross-cultural empirical investigation of the theory of planned behaviour. Journal of Electronic Commerce Research 3 (4), 240–253.
    Pavlou, P.A., Fygenson, M., (2006). Understanding and predicting electronic commerce adoption: an extension of the theory of planned behvior. MIS Quarterly 30 (1), 115–143.
    Pearson, K. (1900). X. On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science,50(302), 157-175.
    Ping, R. A. 1999. Unexplored antecedents of exiting in a marketing channel. J.Retailing 75(2) 218–241.
    Quekh, John A., Lisa R. Klein. (1996). The Internet and international marketing. Sloan Management Rei'. 37(3) 60-75
    Rosenberg, M.J., (1960). An analysis of affective-congitive consistency. In: Hovland, C.I., Rosenberg, M.J. (Eds.), Attitude Organization and Change. Yale University Press Inc., CT, pp. 15–64.
    Rotter, J. B. (1966). Generalized expectancies for internal versus external control of reinforcement. Psych. Monographs: General and Appl. 80(1, Whole N. 609).
    Sheth, Jagdish N., Rajendra S. Sisodia. 1997. Consumer behavior in the future.
    R. A. Peterson, ed. Electronic Marketing and the Consumer.Sage, Thousand
    Oaks, CA.
    Shih, H.P., (2004). An empirical study on predicting user acceptance of eshopping
    on the Web. Information & Management (41), 351–368.
    Sohn, C. (1999). "The Properties of Internet-based Markets and Customers' Behavior," Proceedings of the Fifth Americas Conference on Information Systems (AMCIS 1999).
    Spreng, Richard A., & Mackoy, Robert D. (1996). An empirical examination of a model of perceived service quality and satisfaction. Journal of Retailing, 72(2), 201-214. doi: http://dx.doi.org/10.1016/S0022-4359(96)90014-7
    Swartz, Nikki (2001-2), “Hot & cold: m-commerce opportunities”, Wireless
    Review; Overland Park; Mar 15, 2001; Vol. 18, No. 6, pp. 32-38
    Taylor, S., & Todd, P. A. (1995). Understanding information technology usage: A test of competing models. Information systems research, 6(2), 144-176.
    Venkatesh, V. (2000). Determinants of perceived ease of use: Integrating control,
    intrinsic motivation, and emotion into the technology acceptance model. Information Systems Research, 11(4), 342–365.
    Webster, Jane, Linda Klebe Trevino, Lisa Ryan. (1993). The dimensionality
    and correlates of flow in human-computer interaction. Comput. Human Behavior 9(4) 411
    Wu, L., & Chen, J. L. (2005). An extension of trust and TAM model with TPB in the initial adoption of on-line tax: An empirical study. International Journal of Human–Computer Studies, 62(6), 784–808.
    Xia, Lan, D. Sudharshan. (2000). An examination of the effects of cognitive
    interruptions on consumer online decision processes. Second Marketing Sci. Internet Conf., USC, Los Angeles, CA
    Yang, Kenneth C. C. (2005). Exploring factors affecting the adoption of mobile commerce in Singapore. Telematics and Informatics, 22(3), 257-277. doi: http://dx.doi.org/10.1016/j.tele.2004.11.003
    Yorulmaz, T. and Don, R. (2002) The M-commerce Roadmap, AFP Exchange, July/August 2002, pp 40–42.
    Zaman, M., Anandarajan, M., & Dai, Q. (2010). Experiencing flow with instant messaging and its facilitating role on creative behaviors. Computers in Human Behavior, 26(5), 1009-1018.
    Zhou, Tao, & Lu, Yaobin. (2011). The effect of interactivity on the flow experience of mobile commerce user. International Journal of Mobile Communications, 9(3), 225-242. doi: 10.1504/IJMC.2011.040604

    無法下載圖示 校內:2023-12-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE