研究生: |
陳振強 Chen, Chen-Chiang |
---|---|
論文名稱: |
應用MEMS熱膜感測器於渦流流量計之管流實驗 Application of MEMS Thermal Film Sensor in Vortex Flowmeter on Pipe Flow Experiment |
指導教授: |
苗君易
Miau, Jiun-Jih |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 119 |
中文關鍵詞: | 渦流流量計 、微感測器 、微機電系統 |
外文關鍵詞: | MEMS, vortex flowmeter, micro sensor |
相關次數: | 點閱:75 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文研究以微機電技術用來製作薄膜式熱膜感測器陣列器,使用氮化矽(silicon nitride)作為結構層,感測器陣列包含鉑(Platinum)電阻感溫元件陣列以及金(Aurum)金屬連結導線,最後在感測器背後製作蝕刻孔,經濕式蝕刻後即完成薄膜式感測器陣列。此熱膜感測器電阻溫度係數(Temperature Coefficient of Resistance , TCR)可以達到0.238%/℃,以液滴模擬降溫實驗,此感測器對物理訊號之響應頻率可達3.4KHz。
本研究主要以自製之薄膜式熱膜感測器運用於渦流流量計,測試其在渦流流量計之實用性以及在管流流場的實驗。實驗中,將感測器封裝於梯形截面鈍形體之中,在風洞實驗的流速範圍Re=10100-41300,可得到其渦流溢放頻率為14.65至58.59Hz之間,將溢放頻率無因次化可得到無因次頻率St(Strouhal Number)約為St=0.093,經測試後溫度感測器安裝於梯形鈍形體後延長平板之最佳位置約為x/d=1.76。
此外將已封裝此感測器之梯形型鈍形體放置於一50mm圓管管流之直管完全發展段,並利用熱線測速儀來比對渦流溢放訊號,結果顯示流量計所感測溢放訊號與熱線所得一致,更進一步將流量計安裝於兩不同平面彎管下游,以及於彎管入口處加裝一鈍形體,兩情況顯示在在彎管下游X’=15D-20D位置可得到較佳的訊號品質,此結果有助於在彎管中流量計擺放位置之參考。
In this research, an array of membrane thermal film sensors array was manufactured by a MEMS fabrication process. The design was featured with using platinum as sensing material, and Aurum as the conducting wires to connect the platinum sensing material and the circuit, Both platinum and aurum are deposited on silicon nitride substrate. Finally, by wet etching the silicon nitride substrate, the membrane thermal film sensors array was finished. Each of the sensors shows the linear temperature-dependence characteristic, with the coefficient of resistance (TCR) of 0.238% /℃ measured. By imposing a stepwise change of surrounding temperature to a sensor, the constant-current circuit output showed a dynamic response up to 3.4KHz.
The membrane thermal film sensors array was applied to a vortex flowmeter for flow measurement. The sensors were packaged in the T-shape vortex flowmeter, for the flow velocity ranging between Re=10100-41300 in low-speed wind tunnel. Thus, the vortex shedding frequencies measured fall between 14.65-58.59Hz. That the non-dimensional frequencies are about St=0.093. From the experiments, the optimal position of the thermal film sensor in vortex flowmeter was found about x/d=1.76.
Furthermore, a T-shaped vortex shedder was assembled in a 50mm pipe flow. Hot-wire anemometer was employed to obtain the vortex shedding signal as well. The characteristics of the signals obtained from the vortex flowmeter and the hot-wire probe appeared alike. Further, by placing the flowmeter downstream of two elbows out of plane, with and without T-shaped cylinder upstream of inlet of the elbows, the signal quality corresponding to those two case were compared. Both cases showed that the best signal quality (SNR) can be obtained in X’=15D-20D downstream of the exit of the elbows. The results suggest that a vortex flowmeter be located at this location for flow measurement.
參考文獻
[1] Satori, T., Flola, C.M., and Matsuura, K., “Vortex Flowmeter Application Report,” Advances in Instrum. , Vol. 39 Pt. 1, 1984, pp. 487-498.
[2] Kawano, T., Miyata, T., Shikuya, N., Takahashi, S., Hondoh, M., Itoh, I., and Biles, B., “Intelligent Vortex Flowmeter,” Advances in Instrum. , Proceedings Vol. 47 Pt. 2, 1992, pp. 997-1009.
[3] Blickley, G. J., “Vortex Flowmeters Provide Higher Accuracy, Lower Pressure Drops,” Control Engineering, 1995, pp. 59-64.
[4] Jelffs, P. A. M., Hayward, A. T. J., “Development in the accurate metering of natural gas liquids,” International Conference on Flow Meas., FLOMEKO’85, 1985, pp. 29-34.
[5] Hensen, E. C., and Restrepo, J. A., “Development of a Small Vortex Shedding Flowmeter for Hypergolic Propellants,” AIAA J., 1988, pp. 88-3602.
[6] Miau, J.J., Hu, C.C., Chou, J.H., “Response of a Vortex flowmeter to impulsive vibrations,” Flow Measurement and Instrumentation, 2000, pp. 41-49.
[7] 杜榮國, MEMS熱膜感測器設計製造及應用於探討非定常流動分離現象, 國立成功大學航空太空研究所碩士論文, 2003.
[8] Huang, J. B., Ho, C. M., and Jaing, F., “Dynamic Behavior and Application of Micro Sensor with Negative Temperature Coefficient,” Proc. Of Instrumentation and Measurement Technology Conference, Pasadena, 1998, pp.1191-1194
[9] Chung G. S., “Novel pressure sensor with multiplayer SOI structure,” Electronics Leters, Volume 26, pp.775-777, 7 June, 1990.
[10] Folkmer B., Steiner P., Lang W., “A pressure sensor based on a nitride membrane using single-crystalline piezoresistors,” Sensors and Actuators A 54, pp.488-492, 1996.
[11] Osamu Tabata, “Fast-Response Silicon Flow Sensor with an On-Chip Fluid Temperature Sensing Element,” IEEE Transactions on Electron Devices, vol. ED-33, no. 3, March, 1986.
[12] Baar J.J. van, Wiegerink R.J., Lammerink T.S.J., Krijnen G.J.M., Elwenpoek M.C., “Sensitive thermal flow sensor based on a micro-machined resistor array,” Transducers, Munich, June 10-14, 2001.
[13] Liu, P. W., Brodie, G. H., “A demonstration of MEMS-based active turbulence tranitioning,” International Journal of Heat and Fluid Flow 21, pp.297-303 ,2000.
[14] Gardner, J. W., Microsensors Principle and Application, Fourth Edition, John Wiley & Son, Inc., 1944.
[15] Pankanin, G. L., “A New Approach to the Bluff Body Design in Vortex Flowmeters,” Proc. of International Symposium on Fluid Control and Meas., FLUCOM '85, Tokyo, Japan, 1985, pp. 1015-1020.
[16] Pankanin, G. L., “Influence of Vortex Meter Configuration on Measure Signal Parameters,” Conf. Rec. IEEE Instrum. Meas. Technol. Conf., May 18-20, 1993, pp. 337-340.
[17] 楊啟昌, 延長平板對鈍形體所產生渦流溢放之影響,國立成功大學航空太空研究所碩士論文,1992.
[18] 李宜珮, 柱狀型式渦流流量計之設計與測試,國立成功大學航空太空研究所碩士論文,1996.
[19] Menz, B., “Vortex flowmeter with enhanced accuracy and reliability by means of sensor fusion and self-validation,” Meas., Vol. 22, Issue3-4, No. 12, 1997, pp. 123-128.
[20] Mattingly G. E., Yeh T. T., “Flowmeter installation effects-single and double elbow configurations,” the 5th International IMEKO-Conference on Flow Measurement FLOMEKO, VDI BERICHTE 768, pp. 65-73, 1989.
[21] Spitzer, D. W., “Flow Measurement – Practical Guide for Measurement and Control,” 1996.
[22] Corpron, G. P., “Vortex Flowmeter Performance Characteristics – Part A : The Effect of Installation Conditions on the Performance of a T-Cross Section Vortex Flowmeter,” ASME, Fluid Engineering Division, Fed-Vol. 58, pp. 1-9, 1987.
[23] Takamoto M., Utsumi H., Watanabe N., Terao Y., “Intallation effects on vortex shedding flowmeters,” Flow Measurement and Instrumentaion 4, pp. 277-285, April , 1993.
[24] Gotthardt W.C.O., “Ocillatory flowmeters,” D. W. Spizer (Ed.), Flow Measurement, Instrument Society of America, Research Triangle Park, NC, 99. 295-314, 1991.
[25] Miau, J.J., Hu, C.C., Lin, S. M., Chou, J.H., “Performance of a vortex flowmeter downstream of single elbow and double elbows out-of plane,” Journal of the Chinese Society of Mechanical Engineers 22, pp. 515-525, June , 2001.
[26] Miau, J.J., Wu, C. W., Hu, C.C., Chou, J.H., “A study on signal quality of a vortex flowmeter downstream of two elbow out-of-plane,” Flow Measurement and Instrumentation 13, pp. 75-85, 2002.
[27] Lee, G. B., Hu, J. H., Miau, J. J., “A Flexible Skin with Temperature Sensor Array,” Journal of the Chinese Institute of Engineers, 2002.
[28] Peterson K. E., “Silicon as a mechanical material,” Proc. IEEE, vol. 70, no5, pp. 420-457, May 1, 1982.
[29] Flokmer B., teiner P., Walter Lang, “A pressure sensor based on a nitride membrane using single-crystalline piezoresistors,” Sensors and Actuators A 54, pp. 488-492, 1996.
[30] Zinoviev, V., Lebigia, V., Chung, K. M., and Miau, J. J., “Using Hilbert Spectral Analysis in Hot-Wire Measurement in Compressible Subsonic Flows, AIAA paper No.2001-0308, 2001.
[31] 林世敏, 完全發展管流及彎管對渦流流量計性能測試,國立成功大學航空太空研究所碩士論文, 1998.
[32] 葉建鋒, 渦流流量計信號與性能分析, 國立成功大學航空太空研究所碩士論文, 2003.
[33] 葉冠廷, 兩不同平面彎管下游之動量混合現象, 國立成功大學航空太空研究所碩士論文, 2004.